Quizbank/calcPhyEMqAll/c05
calcPhyEMqAll/c05 ID153478379917
For more information visit Quizbank/calcPhyEMqAll
Exams: A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 E0 E1 E2 F0 F1 F2 G0 G1 G2 H0 H1 H2 I0 I1 I2 J0 J1 J2 K0 K1 K2 L0 L1 L2 M0 M1 M2 N0 N1 N2 O0 O1 O2 P0 P1 P2 Q0 Q1 Q2 R0 R1 R2 S0 S1 S2 T0 T1 T2 U0 U1 U2 V0 V1 V2 W0 W1 W2 X0 X1 X2 Y0 Y1 Y2 Z0 Z1 Z2
Answers: A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 E0 E1 E2 F0 F1 F2 G0 G1 G2 H0 H1 H2 I0 I1 I2 J0 J1 J2 K0 K1 K2 L0 L1 L2 M0 M1 M2 N0 N1 N2 O0 O1 O2 P0 P1 P2 Q0 Q1 Q2 R0 R1 R2 S0 S1 S2 T0 T1 T2 U0 U1 U2 V0 V1 V2 W0 W1 W2 X0 X1 X2 Y0 Y1 Y2 Z0 Z1 Z2
78 Tests = 3 versions x 26 variations: Each of the 26 variations (A, B, ...) represents a different random selection of questions taken from the study guide.The 3 versions (0,1,..) all have the same questions but in different order and with different numerical inputs. Unless all students take version "0" it is best to reserve it for the instructor because the questions are grouped according to the order in which they appear on the study guide.
Links: Quizbank/Instructions Study guide file:QB-calcPhyEMqAll-c05.pdf
Contact me at User talk:Guy vandegrift if you need any help.
c05 A0
edit- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.4 m. Evaluate at x=1.1 m if a=0.69 m, b=2.2 m. The total charge on the rod is 6 nC.
- a) 3.161E+00 V/m2
- b) 3.477E+00 V/m2
- c) 3.825E+00 V/m2
- d) 4.208E+00 V/m2
- e) 4.628E+00 V/m2
- a) 7.119E+09 N/C2
- b) 7.831E+09 N/C2
- c) 8.614E+09 N/C2
- d) 9.476E+09 N/C2
- e) 1.042E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.606E+00 V/m2
- b) 1.767E+00 V/m2
- c) 1.943E+00 V/m2
- d) 2.138E+00 V/m2
- e) 2.351E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 5.647E+01 N/C
- b) 6.212E+01 N/C
- c) 6.833E+01 N/C
- d) 7.516E+01 N/C
- e) 8.268E+01 N/C
c05 A1
edit1) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.500E+01 N/C
- b) 3.850E+01 N/C
- c) 4.235E+01 N/C
- d) 4.659E+01 N/C
- e) 5.125E+01 N/C
- a) 9.750E-15 N
- b) 1.072E-14 N
- c) 1.180E-14 N
- d) 1.298E-14 N
- e) 1.427E-14 N
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 9.459E+00 V/m2
- b) 1.040E+01 V/m2
- c) 1.145E+01 V/m2
- d) 1.259E+01 V/m2
- e) 1.385E+01 V/m2
- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
- a) 4.602E+00 V/m2
- b) 5.062E+00 V/m2
- c) 5.568E+00 V/m2
- d) 6.125E+00 V/m2
- e) 6.738E+00 V/m2
- a) 4.766E+01 degrees
- b) 5.243E+01 degrees
- c) 5.767E+01 degrees
- d) 6.343E+01 degrees
- e) 6.978E+01 degrees
c05 A2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.134E-01 V/m2
- b) 5.648E-01 V/m2
- c) 6.212E-01 V/m2
- d) 6.834E-01 V/m2
- e) 7.517E-01 V/m2
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
3) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- a) 9.655E+00 V/m2
- b) 1.062E+01 V/m2
- c) 1.168E+01 V/m2
- d) 1.285E+01 V/m2
- e) 1.414E+01 V/m2
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
c05 B0
edit- a) 9.750E-15 N
- b) 1.072E-14 N
- c) 1.180E-14 N
- d) 1.298E-14 N
- e) 1.427E-14 N
- a) 5.767E+01 degrees
- b) 6.343E+01 degrees
- c) 6.978E+01 degrees
- d) 7.676E+01 degrees
- e) 8.443E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
- a) 1.764E+09 N/C2
- b) 1.941E+09 N/C2
- c) 2.135E+09 N/C2
- d) 2.348E+09 N/C2
- e) 2.583E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.022E+00 V/m2
- b) 1.125E+00 V/m2
- c) 1.237E+00 V/m2
- d) 1.361E+00 V/m2
- e) 1.497E+00 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 3.428E+01 N/C
- b) 3.771E+01 N/C
- c) 4.148E+01 N/C
- d) 4.563E+01 N/C
- e) 5.020E+01 N/C
c05 B1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.258E+00 V/m2
- b) 1.384E+00 V/m2
- c) 1.522E+00 V/m2
- d) 1.674E+00 V/m2
- e) 1.842E+00 V/m2
- a) 2.429E+09 N/C2
- b) 2.672E+09 N/C2
- c) 2.939E+09 N/C2
- d) 3.233E+09 N/C2
- e) 3.556E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.96 m if a=0.63 m, b=1.4 m. The total charge on the rod is 3 nC.
- a) 3.719E+00 V/m2
- b) 4.091E+00 V/m2
- c) 4.500E+00 V/m2
- d) 4.950E+00 V/m2
- e) 5.445E+00 V/m2
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
- a) 5.732E-15 N
- b) 6.305E-15 N
- c) 6.936E-15 N
- d) 7.629E-15 N
- e) 8.392E-15 N
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
c05 B2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 8.690E+00 V/m2
- b) 9.559E+00 V/m2
- c) 1.051E+01 V/m2
- d) 1.157E+01 V/m2
- e) 1.272E+01 V/m2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.647E+00 V/m2
- b) 6.212E+00 V/m2
- c) 6.833E+00 V/m2
- d) 7.517E+00 V/m2
- e) 8.268E+00 V/m2
- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees
- a) 7.119E+09 N/C2
- b) 7.831E+09 N/C2
- c) 8.614E+09 N/C2
- d) 9.476E+09 N/C2
- e) 1.042E+10 N/C2
- a) 3.876E-14 N
- b) 4.263E-14 N
- c) 4.690E-14 N
- d) 5.159E-14 N
- e) 5.675E-14 N
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
c05 C0
edit- a) 5.014E-14 N
- b) 5.515E-14 N
- c) 6.067E-14 N
- d) 6.674E-14 N
- e) 7.341E-14 N
- a) 6.125E+01 degrees
- b) 6.738E+01 degrees
- c) 7.412E+01 degrees
- d) 8.153E+01 degrees
- e) 8.968E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
- a) 8.336E+09 N/C2
- b) 9.170E+09 N/C2
- c) 1.009E+10 N/C2
- d) 1.110E+10 N/C2
- e) 1.220E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 9.459E+00 V/m2
- b) 1.040E+01 V/m2
- c) 1.145E+01 V/m2
- d) 1.259E+01 V/m2
- e) 1.385E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
c05 C1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.647E+00 V/m2
- b) 6.212E+00 V/m2
- c) 6.833E+00 V/m2
- d) 7.517E+00 V/m2
- e) 8.268E+00 V/m2
2) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 9.412E+01 N/C
- b) 1.035E+02 N/C
- c) 1.139E+02 N/C
- d) 1.253E+02 N/C
- e) 1.378E+02 N/C
- a) 1.308E-13 N
- b) 1.439E-13 N
- c) 1.583E-13 N
- d) 1.741E-13 N
- e) 1.915E-13 N
- a) 5.914E+01 degrees
- b) 6.506E+01 degrees
- c) 7.157E+01 degrees
- d) 7.872E+01 degrees
- e) 8.659E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- a) 9.655E+00 V/m2
- b) 1.062E+01 V/m2
- c) 1.168E+01 V/m2
- d) 1.285E+01 V/m2
- e) 1.414E+01 V/m2
- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
c05 C2
edit- a) 3.426E-15 N
- b) 3.768E-15 N
- c) 4.145E-15 N
- d) 4.560E-15 N
- e) 5.015E-15 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
- a) 1.202E+09 N/C2
- b) 1.322E+09 N/C2
- c) 1.454E+09 N/C2
- d) 1.599E+09 N/C2
- e) 1.759E+09 N/C2
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
5) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 6.534E+01 N/C
- b) 7.187E+01 N/C
- c) 7.906E+01 N/C
- d) 8.696E+01 N/C
- e) 9.566E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.258E+00 V/m2
- b) 1.384E+00 V/m2
- c) 1.522E+00 V/m2
- d) 1.674E+00 V/m2
- e) 1.842E+00 V/m2
c05 D0
edit- a) 3.426E-15 N
- b) 3.768E-15 N
- c) 4.145E-15 N
- d) 4.560E-15 N
- e) 5.015E-15 N
- a) 6.125E+01 degrees
- b) 6.738E+01 degrees
- c) 7.412E+01 degrees
- d) 8.153E+01 degrees
- e) 8.968E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.4 m. Evaluate at x=1.1 m if a=0.69 m, b=2.2 m. The total charge on the rod is 6 nC.
- a) 3.161E+00 V/m2
- b) 3.477E+00 V/m2
- c) 3.825E+00 V/m2
- d) 4.208E+00 V/m2
- e) 4.628E+00 V/m2
- a) 1.764E+09 N/C2
- b) 1.941E+09 N/C2
- c) 2.135E+09 N/C2
- d) 2.348E+09 N/C2
- e) 2.583E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.933E+00 V/m2
- b) 9.826E+00 V/m2
- c) 1.081E+01 V/m2
- d) 1.189E+01 V/m2
- e) 1.308E+01 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.357E+01 N/C
- b) 2.593E+01 N/C
- c) 2.852E+01 N/C
- d) 3.137E+01 N/C
- e) 3.451E+01 N/C
c05 D1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
- a) 1.028E-14 N
- b) 1.130E-14 N
- c) 1.244E-14 N
- d) 1.368E-14 N
- e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- a) 3.610E+00 V/m2
- b) 3.971E+00 V/m2
- c) 4.368E+00 V/m2
- d) 4.804E+00 V/m2
- e) 5.285E+00 V/m2
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 7.701E+01 N/C
- b) 8.471E+01 N/C
- c) 9.318E+01 N/C
- d) 1.025E+02 N/C
- e) 1.127E+02 N/C
- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
- a) 4.743E+01 degrees
- b) 5.217E+01 degrees
- c) 5.739E+01 degrees
- d) 6.313E+01 degrees
- e) 6.944E+01 degrees
c05 D2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- a) 5.465E+00 V/m2
- b) 6.012E+00 V/m2
- c) 6.613E+00 V/m2
- d) 7.274E+00 V/m2
- e) 8.002E+00 V/m2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
- a) 3.876E-14 N
- b) 4.263E-14 N
- c) 4.690E-14 N
- d) 5.159E-14 N
- e) 5.675E-14 N
- a) 7.119E+09 N/C2
- b) 7.831E+09 N/C2
- c) 8.614E+09 N/C2
- d) 9.476E+09 N/C2
- e) 1.042E+10 N/C2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.357E+01 N/C
- b) 2.593E+01 N/C
- c) 2.852E+01 N/C
- d) 3.137E+01 N/C
- e) 3.451E+01 N/C
c05 E0
edit- a) 5.243E-14 N
- b) 5.768E-14 N
- c) 6.344E-14 N
- d) 6.979E-14 N
- e) 7.677E-14 N
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 6.311E+00 V/m2
- b) 6.943E+00 V/m2
- c) 7.637E+00 V/m2
- d) 8.401E+00 V/m2
- e) 9.241E+00 V/m2
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.228E+00 V/m2
- b) 3.551E+00 V/m2
- c) 3.906E+00 V/m2
- d) 4.297E+00 V/m2
- e) 4.727E+00 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 3.428E+01 N/C
- b) 3.771E+01 N/C
- c) 4.148E+01 N/C
- d) 4.563E+01 N/C
- e) 5.020E+01 N/C
c05 E1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- a) 5.267E+00 V/m2
- b) 5.794E+00 V/m2
- c) 6.374E+00 V/m2
- d) 7.011E+00 V/m2
- e) 7.712E+00 V/m2
- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
- a) 3.876E-14 N
- b) 4.263E-14 N
- c) 4.690E-14 N
- d) 5.159E-14 N
- e) 5.675E-14 N
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 2.898E+01 V/m2
- b) 3.188E+01 V/m2
- c) 3.507E+01 V/m2
- d) 3.857E+01 V/m2
- e) 4.243E+01 V/m2
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 8.471E+01 N/C
- b) 9.318E+01 N/C
- c) 1.025E+02 N/C
- d) 1.127E+02 N/C
- e) 1.240E+02 N/C
c05 E2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.52 m if a=0.88 m, b=1.3 m. The total charge on the rod is 6 nC.
- a) 6.804E+00 V/m2
- b) 7.485E+00 V/m2
- c) 8.233E+00 V/m2
- d) 9.056E+00 V/m2
- e) 9.962E+00 V/m2
- a) 2.544E-14 N
- b) 2.798E-14 N
- c) 3.078E-14 N
- d) 3.385E-14 N
- e) 3.724E-14 N
3) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.571E+01 N/C
- b) 2.828E+01 N/C
- c) 3.111E+01 N/C
- d) 3.422E+01 N/C
- e) 3.765E+01 N/C
- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.517E+00 V/m2
- b) 8.269E+00 V/m2
- c) 9.096E+00 V/m2
- d) 1.001E+01 V/m2
- e) 1.101E+01 V/m2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
c05 F0
edit- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 8.690E+00 V/m2
- b) 9.559E+00 V/m2
- c) 1.051E+01 V/m2
- d) 1.157E+01 V/m2
- e) 1.272E+01 V/m2
- a) 4.142E+09 N/C2
- b) 4.556E+09 N/C2
- c) 5.012E+09 N/C2
- d) 5.513E+09 N/C2
- e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 2.567E+01 V/m2
- b) 2.824E+01 V/m2
- c) 3.106E+01 V/m2
- d) 3.417E+01 V/m2
- e) 3.759E+01 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 4.492E+01 N/C
- b) 4.941E+01 N/C
- c) 5.435E+01 N/C
- d) 5.979E+01 N/C
- e) 6.577E+01 N/C
c05 F1
edit- a) 1.308E-13 N
- b) 1.439E-13 N
- c) 1.583E-13 N
- d) 1.741E-13 N
- e) 1.915E-13 N
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.606E+00 V/m2
- b) 1.767E+00 V/m2
- c) 1.943E+00 V/m2
- d) 2.138E+00 V/m2
- e) 2.351E+00 V/m2
3) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 7.000E+01 N/C
- b) 7.701E+01 N/C
- c) 8.471E+01 N/C
- d) 9.318E+01 N/C
- e) 1.025E+02 N/C
- a) 4.142E+09 N/C2
- b) 4.556E+09 N/C2
- c) 5.012E+09 N/C2
- d) 5.513E+09 N/C2
- e) 6.064E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- a) 3.610E+00 V/m2
- b) 3.971E+00 V/m2
- c) 4.368E+00 V/m2
- d) 4.804E+00 V/m2
- e) 5.285E+00 V/m2
- a) 5.377E+01 degrees
- b) 5.914E+01 degrees
- c) 6.506E+01 degrees
- d) 7.157E+01 degrees
- e) 7.872E+01 degrees
c05 F2
edit- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- a) 3.385E+00 V/m2
- b) 3.724E+00 V/m2
- c) 4.096E+00 V/m2
- d) 4.506E+00 V/m2
- e) 4.957E+00 V/m2
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 5.647E+01 N/C
- b) 6.212E+01 N/C
- c) 6.833E+01 N/C
- d) 7.516E+01 N/C
- e) 8.268E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
c05 G0
edit- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
- a) 5.914E+01 degrees
- b) 6.506E+01 degrees
- c) 7.157E+01 degrees
- d) 7.872E+01 degrees
- e) 8.659E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 8.690E+00 V/m2
- b) 9.559E+00 V/m2
- c) 1.051E+01 V/m2
- d) 1.157E+01 V/m2
- e) 1.272E+01 V/m2
- a) 8.336E+09 N/C2
- b) 9.170E+09 N/C2
- c) 1.009E+10 N/C2
- d) 1.110E+10 N/C2
- e) 1.220E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 9.459E+00 V/m2
- b) 1.040E+01 V/m2
- c) 1.145E+01 V/m2
- d) 1.259E+01 V/m2
- e) 1.385E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
c05 G1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees
- a) 2.036E-14 N
- b) 2.240E-14 N
- c) 2.464E-14 N
- d) 2.710E-14 N
- e) 2.981E-14 N
4) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 3.428E+01 N/C
- b) 3.771E+01 N/C
- c) 4.148E+01 N/C
- d) 4.563E+01 N/C
- e) 5.020E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.4 m. Evaluate at x=1.1 m if a=0.69 m, b=2.2 m. The total charge on the rod is 6 nC.
- a) 3.161E+00 V/m2
- b) 3.477E+00 V/m2
- c) 3.825E+00 V/m2
- d) 4.208E+00 V/m2
- e) 4.628E+00 V/m2
- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
c05 G2
edit- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
2) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 3.428E+01 N/C
- b) 3.771E+01 N/C
- c) 4.148E+01 N/C
- d) 4.563E+01 N/C
- e) 5.020E+01 N/C
- a) 5.243E-14 N
- b) 5.768E-14 N
- c) 6.344E-14 N
- d) 6.979E-14 N
- e) 7.677E-14 N
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 9.459E+00 V/m2
- b) 1.040E+01 V/m2
- c) 1.145E+01 V/m2
- d) 1.259E+01 V/m2
- e) 1.385E+01 V/m2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- a) 5.465E+00 V/m2
- b) 6.012E+00 V/m2
- c) 6.613E+00 V/m2
- d) 7.274E+00 V/m2
- e) 8.002E+00 V/m2
c05 H0
edit- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
- a) 4.766E+01 degrees
- b) 5.243E+01 degrees
- c) 5.767E+01 degrees
- d) 6.343E+01 degrees
- e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- a) 9.655E+00 V/m2
- b) 1.062E+01 V/m2
- c) 1.168E+01 V/m2
- d) 1.285E+01 V/m2
- e) 1.414E+01 V/m2
- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.722E-01 V/m2
- b) 4.094E-01 V/m2
- c) 4.504E-01 V/m2
- d) 4.954E-01 V/m2
- e) 5.450E-01 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.357E+01 N/C
- b) 2.593E+01 N/C
- c) 2.852E+01 N/C
- d) 3.137E+01 N/C
- e) 3.451E+01 N/C
c05 H1
edit1) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 6.534E+01 N/C
- b) 7.187E+01 N/C
- c) 7.906E+01 N/C
- d) 8.696E+01 N/C
- e) 9.566E+01 N/C
- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.722E-01 V/m2
- b) 4.094E-01 V/m2
- c) 4.504E-01 V/m2
- d) 4.954E-01 V/m2
- e) 5.450E-01 V/m2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
c05 H2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 1.399E+01 V/m2
- b) 1.539E+01 V/m2
- c) 1.693E+01 V/m2
- d) 1.862E+01 V/m2
- e) 2.049E+01 V/m2
- a) 4.743E+01 degrees
- b) 5.217E+01 degrees
- c) 5.739E+01 degrees
- d) 6.313E+01 degrees
- e) 6.944E+01 degrees
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
5) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.500E+01 N/C
- b) 3.850E+01 N/C
- c) 4.235E+01 N/C
- d) 4.659E+01 N/C
- e) 5.125E+01 N/C
- a) 1.202E+09 N/C2
- b) 1.322E+09 N/C2
- c) 1.454E+09 N/C2
- d) 1.599E+09 N/C2
- e) 1.759E+09 N/C2
c05 I0
edit- a) 1.308E-13 N
- b) 1.439E-13 N
- c) 1.583E-13 N
- d) 1.741E-13 N
- e) 1.915E-13 N
- a) 5.062E+01 degrees
- b) 5.569E+01 degrees
- c) 6.125E+01 degrees
- d) 6.738E+01 degrees
- e) 7.412E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
- a) 6.925E+09 N/C2
- b) 7.617E+09 N/C2
- c) 8.379E+09 N/C2
- d) 9.217E+09 N/C2
- e) 1.014E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.647E+00 V/m2
- b) 6.212E+00 V/m2
- c) 6.833E+00 V/m2
- d) 7.517E+00 V/m2
- e) 8.268E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
c05 I1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- a) 5.465E+00 V/m2
- b) 6.012E+00 V/m2
- c) 6.613E+00 V/m2
- d) 7.274E+00 V/m2
- e) 8.002E+00 V/m2
- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
- a) 3.961E+01 degrees
- b) 4.357E+01 degrees
- c) 4.793E+01 degrees
- d) 5.272E+01 degrees
- e) 5.799E+01 degrees
- a) 6.925E+09 N/C2
- b) 7.617E+09 N/C2
- c) 8.379E+09 N/C2
- d) 9.217E+09 N/C2
- e) 1.014E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
c05 I2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.647E+00 V/m2
- b) 6.212E+00 V/m2
- c) 6.833E+00 V/m2
- d) 7.517E+00 V/m2
- e) 8.268E+00 V/m2
- a) 5.914E+01 degrees
- b) 6.506E+01 degrees
- c) 7.157E+01 degrees
- d) 7.872E+01 degrees
- e) 8.659E+01 degrees
- a) 2.248E-14 N
- b) 2.473E-14 N
- c) 2.721E-14 N
- d) 2.993E-14 N
- e) 3.292E-14 N
- a) 2.429E+09 N/C2
- b) 2.672E+09 N/C2
- c) 2.939E+09 N/C2
- d) 3.233E+09 N/C2
- e) 3.556E+09 N/C2
5) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.571E+01 N/C
- b) 2.828E+01 N/C
- c) 3.111E+01 N/C
- d) 3.422E+01 N/C
- e) 3.765E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- a) 3.385E+00 V/m2
- b) 3.724E+00 V/m2
- c) 4.096E+00 V/m2
- d) 4.506E+00 V/m2
- e) 4.957E+00 V/m2
c05 J0
edit- a) 2.248E-14 N
- b) 2.473E-14 N
- c) 2.721E-14 N
- d) 2.993E-14 N
- e) 3.292E-14 N
- a) 6.125E+01 degrees
- b) 6.738E+01 degrees
- c) 7.412E+01 degrees
- d) 8.153E+01 degrees
- e) 8.968E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
- a) 4.142E+09 N/C2
- b) 4.556E+09 N/C2
- c) 5.012E+09 N/C2
- d) 5.513E+09 N/C2
- e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
c05 J1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.61 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 5.995E+00 V/m2
- b) 6.595E+00 V/m2
- c) 7.254E+00 V/m2
- d) 7.980E+00 V/m2
- e) 8.778E+00 V/m2
2) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 9.412E+01 N/C
- b) 1.035E+02 N/C
- c) 1.139E+02 N/C
- d) 1.253E+02 N/C
- e) 1.378E+02 N/C
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.606E+00 V/m2
- b) 1.767E+00 V/m2
- c) 1.943E+00 V/m2
- d) 2.138E+00 V/m2
- e) 2.351E+00 V/m2
- a) 2.036E-14 N
- b) 2.240E-14 N
- c) 2.464E-14 N
- d) 2.710E-14 N
- e) 2.981E-14 N
- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
- a) 3.961E+01 degrees
- b) 4.357E+01 degrees
- c) 4.793E+01 degrees
- d) 5.272E+01 degrees
- e) 5.799E+01 degrees
c05 J2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.022E+00 V/m2
- b) 1.125E+00 V/m2
- c) 1.237E+00 V/m2
- d) 1.361E+00 V/m2
- e) 1.497E+00 V/m2
2) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 1.694E+02 N/C
- b) 1.864E+02 N/C
- c) 2.050E+02 N/C
- d) 2.255E+02 N/C
- e) 2.480E+02 N/C
- a) 3.426E-15 N
- b) 3.768E-15 N
- c) 4.145E-15 N
- d) 4.560E-15 N
- e) 5.015E-15 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
- a) 5.767E+01 degrees
- b) 6.343E+01 degrees
- c) 6.978E+01 degrees
- d) 7.676E+01 degrees
- e) 8.443E+01 degrees
- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
c05 K0
edit- a) 2.248E-14 N
- b) 2.473E-14 N
- c) 2.721E-14 N
- d) 2.993E-14 N
- e) 3.292E-14 N
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.52 m if a=0.88 m, b=1.3 m. The total charge on the rod is 6 nC.
- a) 6.804E+00 V/m2
- b) 7.485E+00 V/m2
- c) 8.233E+00 V/m2
- d) 9.056E+00 V/m2
- e) 9.962E+00 V/m2
- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 6.877E+00 V/m2
- b) 7.565E+00 V/m2
- c) 8.321E+00 V/m2
- d) 9.153E+00 V/m2
- e) 1.007E+01 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
c05 K1
edit1) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
- a) 4.788E+09 N/C2
- b) 5.267E+09 N/C2
- c) 5.793E+09 N/C2
- d) 6.373E+09 N/C2
- e) 7.010E+09 N/C2
- a) 5.732E-15 N
- b) 6.305E-15 N
- c) 6.936E-15 N
- d) 7.629E-15 N
- e) 8.392E-15 N
- a) 6.125E+01 degrees
- b) 6.738E+01 degrees
- c) 7.412E+01 degrees
- d) 8.153E+01 degrees
- e) 8.968E+01 degrees
c05 K2
edit1) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 8.471E+01 N/C
- b) 9.318E+01 N/C
- c) 1.025E+02 N/C
- d) 1.127E+02 N/C
- e) 1.240E+02 N/C
- a) 5.243E-14 N
- b) 5.768E-14 N
- c) 6.344E-14 N
- d) 6.979E-14 N
- e) 7.677E-14 N
- a) 4.766E+01 degrees
- b) 5.243E+01 degrees
- c) 5.767E+01 degrees
- d) 6.343E+01 degrees
- e) 6.978E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.517E+00 V/m2
- b) 8.269E+00 V/m2
- c) 9.096E+00 V/m2
- d) 1.001E+01 V/m2
- e) 1.101E+01 V/m2
- a) 4.788E+09 N/C2
- b) 5.267E+09 N/C2
- c) 5.793E+09 N/C2
- d) 6.373E+09 N/C2
- e) 7.010E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- a) 3.610E+00 V/m2
- b) 3.971E+00 V/m2
- c) 4.368E+00 V/m2
- d) 4.804E+00 V/m2
- e) 5.285E+00 V/m2
c05 L0
edit- a) 2.544E-14 N
- b) 2.798E-14 N
- c) 3.078E-14 N
- d) 3.385E-14 N
- e) 3.724E-14 N
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 7.000E+01 N/C
- b) 7.701E+01 N/C
- c) 8.471E+01 N/C
- d) 9.318E+01 N/C
- e) 1.025E+02 N/C
c05 L1
edit- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- a) 5.267E+00 V/m2
- b) 5.794E+00 V/m2
- c) 6.374E+00 V/m2
- d) 7.011E+00 V/m2
- e) 7.712E+00 V/m2
- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
- a) 5.732E-15 N
- b) 6.305E-15 N
- c) 6.936E-15 N
- d) 7.629E-15 N
- e) 8.392E-15 N
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.253E-01 V/m2
- b) 9.079E-01 V/m2
- c) 9.987E-01 V/m2
- d) 1.099E+00 V/m2
- e) 1.208E+00 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
c05 L2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.83 m if a=0.7 m, b=1.8 m. The total charge on the rod is 9 nC.
- a) 6.897E+00 V/m2
- b) 7.587E+00 V/m2
- c) 8.345E+00 V/m2
- d) 9.180E+00 V/m2
- e) 1.010E+01 V/m2
- a) 4.091E+01 degrees
- b) 4.500E+01 degrees
- c) 4.950E+01 degrees
- d) 5.445E+01 degrees
- e) 5.990E+01 degrees
3) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
- a) 5.732E-15 N
- b) 6.305E-15 N
- c) 6.936E-15 N
- d) 7.629E-15 N
- e) 8.392E-15 N
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.722E-01 V/m2
- b) 4.094E-01 V/m2
- c) 4.504E-01 V/m2
- d) 4.954E-01 V/m2
- e) 5.450E-01 V/m2
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
c05 M0
edit- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
- a) 4.743E+01 degrees
- b) 5.217E+01 degrees
- c) 5.739E+01 degrees
- d) 6.313E+01 degrees
- e) 6.944E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 6.311E+00 V/m2
- b) 6.943E+00 V/m2
- c) 7.637E+00 V/m2
- d) 8.401E+00 V/m2
- e) 9.241E+00 V/m2
- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.933E+00 V/m2
- b) 9.826E+00 V/m2
- c) 1.081E+01 V/m2
- d) 1.189E+01 V/m2
- e) 1.308E+01 V/m2
6) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 1.694E+02 N/C
- b) 1.864E+02 N/C
- c) 2.050E+02 N/C
- d) 2.255E+02 N/C
- e) 2.480E+02 N/C
c05 M1
edit- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.820E-01 V/m2
- b) 8.602E-01 V/m2
- c) 9.462E-01 V/m2
- d) 1.041E+00 V/m2
- e) 1.145E+00 V/m2
- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- a) 3.610E+00 V/m2
- b) 3.971E+00 V/m2
- c) 4.368E+00 V/m2
- d) 4.804E+00 V/m2
- e) 5.285E+00 V/m2
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 7.000E+01 N/C
- b) 7.701E+01 N/C
- c) 8.471E+01 N/C
- d) 9.318E+01 N/C
- e) 1.025E+02 N/C
c05 M2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
4) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 4.492E+01 N/C
- b) 4.941E+01 N/C
- c) 5.435E+01 N/C
- d) 5.979E+01 N/C
- e) 6.577E+01 N/C
- a) 2.544E-14 N
- b) 2.798E-14 N
- c) 3.078E-14 N
- d) 3.385E-14 N
- e) 3.724E-14 N
- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
c05 N0
edit- a) 1.473E-14 N
- b) 1.620E-14 N
- c) 1.782E-14 N
- d) 1.960E-14 N
- e) 2.156E-14 N
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.820E-01 V/m2
- b) 8.602E-01 V/m2
- c) 9.462E-01 V/m2
- d) 1.041E+00 V/m2
- e) 1.145E+00 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
c05 N1
edit- a) 8.336E+09 N/C2
- b) 9.170E+09 N/C2
- c) 1.009E+10 N/C2
- d) 1.110E+10 N/C2
- e) 1.220E+10 N/C2
- a) 5.014E-14 N
- b) 5.515E-14 N
- c) 6.067E-14 N
- d) 6.674E-14 N
- e) 7.341E-14 N
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
4) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.571E+01 N/C
- b) 2.828E+01 N/C
- c) 3.111E+01 N/C
- d) 3.422E+01 N/C
- e) 3.765E+01 N/C
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- a) 3.385E+00 V/m2
- b) 3.724E+00 V/m2
- c) 4.096E+00 V/m2
- d) 4.506E+00 V/m2
- e) 4.957E+00 V/m2
c05 N2
edit1) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 9.412E+01 N/C
- b) 1.035E+02 N/C
- c) 1.139E+02 N/C
- d) 1.253E+02 N/C
- e) 1.378E+02 N/C
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 6.877E+00 V/m2
- b) 7.565E+00 V/m2
- c) 8.321E+00 V/m2
- d) 9.153E+00 V/m2
- e) 1.007E+01 V/m2
- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
- a) 1.473E-14 N
- b) 1.620E-14 N
- c) 1.782E-14 N
- d) 1.960E-14 N
- e) 2.156E-14 N
- a) 5.914E+01 degrees
- b) 6.506E+01 degrees
- c) 7.157E+01 degrees
- d) 7.872E+01 degrees
- e) 8.659E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 1.399E+01 V/m2
- b) 1.539E+01 V/m2
- c) 1.693E+01 V/m2
- d) 1.862E+01 V/m2
- e) 2.049E+01 V/m2
c05 O0
edit- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
- a) 4.766E+01 degrees
- b) 5.243E+01 degrees
- c) 5.767E+01 degrees
- d) 6.343E+01 degrees
- e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- a) 3.610E+00 V/m2
- b) 3.971E+00 V/m2
- c) 4.368E+00 V/m2
- d) 4.804E+00 V/m2
- e) 5.285E+00 V/m2
- a) 4.142E+09 N/C2
- b) 4.556E+09 N/C2
- c) 5.012E+09 N/C2
- d) 5.513E+09 N/C2
- e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 2.567E+01 V/m2
- b) 2.824E+01 V/m2
- c) 3.106E+01 V/m2
- d) 3.417E+01 V/m2
- e) 3.759E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 8.471E+01 N/C
- b) 9.318E+01 N/C
- c) 1.025E+02 N/C
- d) 1.127E+02 N/C
- e) 1.240E+02 N/C
c05 O1
edit- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
- a) 3.961E+01 degrees
- b) 4.357E+01 degrees
- c) 4.793E+01 degrees
- d) 5.272E+01 degrees
- e) 5.799E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.52 m if a=0.88 m, b=1.3 m. The total charge on the rod is 6 nC.
- a) 6.804E+00 V/m2
- b) 7.485E+00 V/m2
- c) 8.233E+00 V/m2
- d) 9.056E+00 V/m2
- e) 9.962E+00 V/m2
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 5.647E+01 N/C
- b) 6.212E+01 N/C
- c) 6.833E+01 N/C
- d) 7.516E+01 N/C
- e) 8.268E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.134E-01 V/m2
- b) 5.648E-01 V/m2
- c) 6.212E-01 V/m2
- d) 6.834E-01 V/m2
- e) 7.517E-01 V/m2
c05 O2
edit- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
2) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 3.428E+01 N/C
- b) 3.771E+01 N/C
- c) 4.148E+01 N/C
- d) 4.563E+01 N/C
- e) 5.020E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.258E+00 V/m2
- b) 1.384E+00 V/m2
- c) 1.522E+00 V/m2
- d) 1.674E+00 V/m2
- e) 1.842E+00 V/m2
- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
- a) 6.925E+09 N/C2
- b) 7.617E+09 N/C2
- c) 8.379E+09 N/C2
- d) 9.217E+09 N/C2
- e) 1.014E+10 N/C2
c05 P0
edit- a) 5.243E-14 N
- b) 5.768E-14 N
- c) 6.344E-14 N
- d) 6.979E-14 N
- e) 7.677E-14 N
- a) 3.629E+01 degrees
- b) 3.992E+01 degrees
- c) 4.391E+01 degrees
- d) 4.830E+01 degrees
- e) 5.313E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.517E+00 V/m2
- b) 8.269E+00 V/m2
- c) 9.096E+00 V/m2
- d) 1.001E+01 V/m2
- e) 1.101E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 7.000E+01 N/C
- b) 7.701E+01 N/C
- c) 8.471E+01 N/C
- d) 9.318E+01 N/C
- e) 1.025E+02 N/C
c05 P1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
2) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.652E+01 N/C
- b) 2.917E+01 N/C
- c) 3.209E+01 N/C
- d) 3.529E+01 N/C
- e) 3.882E+01 N/C
- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
- a) 2.544E-14 N
- b) 2.798E-14 N
- c) 3.078E-14 N
- d) 3.385E-14 N
- e) 3.724E-14 N
- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.722E-01 V/m2
- b) 4.094E-01 V/m2
- c) 4.504E-01 V/m2
- d) 4.954E-01 V/m2
- e) 5.450E-01 V/m2
c05 P2
edit- a) 8.336E+09 N/C2
- b) 9.170E+09 N/C2
- c) 1.009E+10 N/C2
- d) 1.110E+10 N/C2
- e) 1.220E+10 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.253E-01 V/m2
- b) 9.079E-01 V/m2
- c) 9.987E-01 V/m2
- d) 1.099E+00 V/m2
- e) 1.208E+00 V/m2
- a) 3.876E-14 N
- b) 4.263E-14 N
- c) 4.690E-14 N
- d) 5.159E-14 N
- e) 5.675E-14 N
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
c05 Q0
edit- a) 1.308E-13 N
- b) 1.439E-13 N
- c) 1.583E-13 N
- d) 1.741E-13 N
- e) 1.915E-13 N
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- a) 5.267E+00 V/m2
- b) 5.794E+00 V/m2
- c) 6.374E+00 V/m2
- d) 7.011E+00 V/m2
- e) 7.712E+00 V/m2
- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.820E-01 V/m2
- b) 8.602E-01 V/m2
- c) 9.462E-01 V/m2
- d) 1.041E+00 V/m2
- e) 1.145E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
c05 Q1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
- a) 5.243E-14 N
- b) 5.768E-14 N
- c) 6.344E-14 N
- d) 6.979E-14 N
- e) 7.677E-14 N
- a) 3.629E+01 degrees
- b) 3.992E+01 degrees
- c) 4.391E+01 degrees
- d) 4.830E+01 degrees
- e) 5.313E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.652E+01 N/C
- b) 2.917E+01 N/C
- c) 3.209E+01 N/C
- d) 3.529E+01 N/C
- e) 3.882E+01 N/C
c05 Q2
edit- a) 1.473E-14 N
- b) 1.620E-14 N
- c) 1.782E-14 N
- d) 1.960E-14 N
- e) 2.156E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
- a) 7.119E+09 N/C2
- b) 7.831E+09 N/C2
- c) 8.614E+09 N/C2
- d) 9.476E+09 N/C2
- e) 1.042E+10 N/C2
c05 R0
edit- a) 2.036E-14 N
- b) 2.240E-14 N
- c) 2.464E-14 N
- d) 2.710E-14 N
- e) 2.981E-14 N
- a) 4.766E+01 degrees
- b) 5.243E+01 degrees
- c) 5.767E+01 degrees
- d) 6.343E+01 degrees
- e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 1.399E+01 V/m2
- b) 1.539E+01 V/m2
- c) 1.693E+01 V/m2
- d) 1.862E+01 V/m2
- e) 2.049E+01 V/m2
- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.571E+01 N/C
- b) 2.828E+01 N/C
- c) 3.111E+01 N/C
- d) 3.422E+01 N/C
- e) 3.765E+01 N/C
c05 R1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 6.877E+00 V/m2
- b) 7.565E+00 V/m2
- c) 8.321E+00 V/m2
- d) 9.153E+00 V/m2
- e) 1.007E+01 V/m2
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
3) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- a) 5.267E+00 V/m2
- b) 5.794E+00 V/m2
- c) 6.374E+00 V/m2
- d) 7.011E+00 V/m2
- e) 7.712E+00 V/m2
- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
c05 R2
edit- a) 8.336E+09 N/C2
- b) 9.170E+09 N/C2
- c) 1.009E+10 N/C2
- d) 1.110E+10 N/C2
- e) 1.220E+10 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
- a) 1.172E-14 N
- b) 1.290E-14 N
- c) 1.419E-14 N
- d) 1.561E-14 N
- e) 1.717E-14 N
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
- a) 4.743E+01 degrees
- b) 5.217E+01 degrees
- c) 5.739E+01 degrees
- d) 6.313E+01 degrees
- e) 6.944E+01 degrees
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
c05 S0
edit- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
- a) 4.766E+01 degrees
- b) 5.243E+01 degrees
- c) 5.767E+01 degrees
- d) 6.343E+01 degrees
- e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
- a) 4.788E+09 N/C2
- b) 5.267E+09 N/C2
- c) 5.793E+09 N/C2
- d) 6.373E+09 N/C2
- e) 7.010E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
c05 S1
edit- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
- a) 4.357E+01 degrees
- b) 4.793E+01 degrees
- c) 5.272E+01 degrees
- d) 5.799E+01 degrees
- e) 6.379E+01 degrees
4) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 1.694E+02 N/C
- b) 1.864E+02 N/C
- c) 2.050E+02 N/C
- d) 2.255E+02 N/C
- e) 2.480E+02 N/C
- a) 1.028E-14 N
- b) 1.130E-14 N
- c) 1.244E-14 N
- d) 1.368E-14 N
- e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 1.399E+01 V/m2
- b) 1.539E+01 V/m2
- c) 1.693E+01 V/m2
- d) 1.862E+01 V/m2
- e) 2.049E+01 V/m2
c05 S2
edit- a) 5.014E-14 N
- b) 5.515E-14 N
- c) 6.067E-14 N
- d) 6.674E-14 N
- e) 7.341E-14 N
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 2.567E+01 V/m2
- b) 2.824E+01 V/m2
- c) 3.106E+01 V/m2
- d) 3.417E+01 V/m2
- e) 3.759E+01 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 8.471E+01 N/C
- b) 9.318E+01 N/C
- c) 1.025E+02 N/C
- d) 1.127E+02 N/C
- e) 1.240E+02 N/C
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
c05 T0
edit- a) 2.248E-14 N
- b) 2.473E-14 N
- c) 2.721E-14 N
- d) 2.993E-14 N
- e) 3.292E-14 N
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 8.690E+00 V/m2
- b) 9.559E+00 V/m2
- c) 1.051E+01 V/m2
- d) 1.157E+01 V/m2
- e) 1.272E+01 V/m2
- a) 1.353E+09 N/C2
- b) 1.488E+09 N/C2
- c) 1.637E+09 N/C2
- d) 1.801E+09 N/C2
- e) 1.981E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.134E-01 V/m2
- b) 5.648E-01 V/m2
- c) 6.212E-01 V/m2
- d) 6.834E-01 V/m2
- e) 7.517E-01 V/m2
6) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 1.694E+02 N/C
- b) 1.864E+02 N/C
- c) 2.050E+02 N/C
- d) 2.255E+02 N/C
- e) 2.480E+02 N/C
c05 T1
edit- a) 3.672E+09 N/C2
- b) 4.039E+09 N/C2
- c) 4.443E+09 N/C2
- d) 4.887E+09 N/C2
- e) 5.376E+09 N/C2
2) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
- a) 4.091E+01 degrees
- b) 4.500E+01 degrees
- c) 4.950E+01 degrees
- d) 5.445E+01 degrees
- e) 5.990E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- a) 9.655E+00 V/m2
- b) 1.062E+01 V/m2
- c) 1.168E+01 V/m2
- d) 1.285E+01 V/m2
- e) 1.414E+01 V/m2
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.722E-01 V/m2
- b) 4.094E-01 V/m2
- c) 4.504E-01 V/m2
- d) 4.954E-01 V/m2
- e) 5.450E-01 V/m2
c05 T2
edit1) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 7.000E+01 N/C
- b) 7.701E+01 N/C
- c) 8.471E+01 N/C
- d) 9.318E+01 N/C
- e) 1.025E+02 N/C
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.517E+00 V/m2
- b) 8.269E+00 V/m2
- c) 9.096E+00 V/m2
- d) 1.001E+01 V/m2
- e) 1.101E+01 V/m2
- a) 7.415E+09 N/C2
- b) 8.156E+09 N/C2
- c) 8.972E+09 N/C2
- d) 9.869E+09 N/C2
- e) 1.086E+10 N/C2
- a) 1.172E-14 N
- b) 1.290E-14 N
- c) 1.419E-14 N
- d) 1.561E-14 N
- e) 1.717E-14 N
- a) 4.743E+01 degrees
- b) 5.217E+01 degrees
- c) 5.739E+01 degrees
- d) 6.313E+01 degrees
- e) 6.944E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- a) 3.959E+00 V/m2
- b) 4.355E+00 V/m2
- c) 4.790E+00 V/m2
- d) 5.269E+00 V/m2
- e) 5.796E+00 V/m2
c05 U0
edit- a) 3.426E-15 N
- b) 3.768E-15 N
- c) 4.145E-15 N
- d) 4.560E-15 N
- e) 5.015E-15 N
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 8.690E+00 V/m2
- b) 9.559E+00 V/m2
- c) 1.051E+01 V/m2
- d) 1.157E+01 V/m2
- e) 1.272E+01 V/m2
- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 9.459E+00 V/m2
- b) 1.040E+01 V/m2
- c) 1.145E+01 V/m2
- d) 1.259E+01 V/m2
- e) 1.385E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 7.701E+01 N/C
- b) 8.471E+01 N/C
- c) 9.318E+01 N/C
- d) 1.025E+02 N/C
- e) 1.127E+02 N/C
c05 U1
edit1) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.357E+01 N/C
- b) 2.593E+01 N/C
- c) 2.852E+01 N/C
- d) 3.137E+01 N/C
- e) 3.451E+01 N/C
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees
- a) 1.308E-13 N
- b) 1.439E-13 N
- c) 1.583E-13 N
- d) 1.741E-13 N
- e) 1.915E-13 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.61 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 5.995E+00 V/m2
- b) 6.595E+00 V/m2
- c) 7.254E+00 V/m2
- d) 7.980E+00 V/m2
- e) 8.778E+00 V/m2
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.961E-01 V/m2
- b) 5.457E-01 V/m2
- c) 6.002E-01 V/m2
- d) 6.603E-01 V/m2
- e) 7.263E-01 V/m2
c05 U2
edit1) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.571E+01 N/C
- b) 2.828E+01 N/C
- c) 3.111E+01 N/C
- d) 3.422E+01 N/C
- e) 3.765E+01 N/C
- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.606E+00 V/m2
- b) 1.767E+00 V/m2
- c) 1.943E+00 V/m2
- d) 2.138E+00 V/m2
- e) 2.351E+00 V/m2
- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- a) 3.610E+00 V/m2
- b) 3.971E+00 V/m2
- c) 4.368E+00 V/m2
- d) 4.804E+00 V/m2
- e) 5.285E+00 V/m2
c05 V0
edit- a) 3.876E-14 N
- b) 4.263E-14 N
- c) 4.690E-14 N
- d) 5.159E-14 N
- e) 5.675E-14 N
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
- a) 5.402E+09 N/C2
- b) 5.943E+09 N/C2
- c) 6.537E+09 N/C2
- d) 7.191E+09 N/C2
- e) 7.910E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.647E+00 V/m2
- b) 6.212E+00 V/m2
- c) 6.833E+00 V/m2
- d) 7.517E+00 V/m2
- e) 8.268E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
c05 V1
edit- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.228E+00 V/m2
- b) 3.551E+00 V/m2
- c) 3.906E+00 V/m2
- d) 4.297E+00 V/m2
- e) 4.727E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- a) 3.385E+00 V/m2
- b) 3.724E+00 V/m2
- c) 4.096E+00 V/m2
- d) 4.506E+00 V/m2
- e) 4.957E+00 V/m2
4) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 4.492E+01 N/C
- b) 4.941E+01 N/C
- c) 5.435E+01 N/C
- d) 5.979E+01 N/C
- e) 6.577E+01 N/C
- a) 3.629E+01 degrees
- b) 3.992E+01 degrees
- c) 4.391E+01 degrees
- d) 4.830E+01 degrees
- e) 5.313E+01 degrees
- a) 5.243E-14 N
- b) 5.768E-14 N
- c) 6.344E-14 N
- d) 6.979E-14 N
- e) 7.677E-14 N
c05 V2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- a) 5.465E+00 V/m2
- b) 6.012E+00 V/m2
- c) 6.613E+00 V/m2
- d) 7.274E+00 V/m2
- e) 8.002E+00 V/m2
- a) 2.429E+09 N/C2
- b) 2.672E+09 N/C2
- c) 2.939E+09 N/C2
- d) 3.233E+09 N/C2
- e) 3.556E+09 N/C2
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
- a) 1.028E-14 N
- b) 1.130E-14 N
- c) 1.244E-14 N
- d) 1.368E-14 N
- e) 1.505E-14 N
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 1.606E+00 V/m2
- b) 1.767E+00 V/m2
- c) 1.943E+00 V/m2
- d) 2.138E+00 V/m2
- e) 2.351E+00 V/m2
c05 W0
edit- a) 5.014E-14 N
- b) 5.515E-14 N
- c) 6.067E-14 N
- d) 6.674E-14 N
- e) 7.341E-14 N
- a) 4.743E+01 degrees
- b) 5.217E+01 degrees
- c) 5.739E+01 degrees
- d) 6.313E+01 degrees
- e) 6.944E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 6.311E+00 V/m2
- b) 6.943E+00 V/m2
- c) 7.637E+00 V/m2
- d) 8.401E+00 V/m2
- e) 9.241E+00 V/m2
- a) 2.013E+09 N/C2
- b) 2.214E+09 N/C2
- c) 2.435E+09 N/C2
- d) 2.679E+09 N/C2
- e) 2.947E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
c05 W1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
2) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 4.492E+01 N/C
- b) 4.941E+01 N/C
- c) 5.435E+01 N/C
- d) 5.979E+01 N/C
- e) 6.577E+01 N/C
- a) 9.958E-15 N
- b) 1.095E-14 N
- c) 1.205E-14 N
- d) 1.325E-14 N
- e) 1.458E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 6.311E+00 V/m2
- b) 6.943E+00 V/m2
- c) 7.637E+00 V/m2
- d) 8.401E+00 V/m2
- e) 9.241E+00 V/m2
- a) 5.377E+01 degrees
- b) 5.914E+01 degrees
- c) 6.506E+01 degrees
- d) 7.157E+01 degrees
- e) 7.872E+01 degrees
- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
c05 W2
edit- a) 3.339E+09 N/C2
- b) 3.673E+09 N/C2
- c) 4.041E+09 N/C2
- d) 4.445E+09 N/C2
- e) 4.889E+09 N/C2
2) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.571E+01 N/C
- b) 2.828E+01 N/C
- c) 3.111E+01 N/C
- d) 3.422E+01 N/C
- e) 3.765E+01 N/C
- a) 5.243E+01 degrees
- b) 5.767E+01 degrees
- c) 6.343E+01 degrees
- d) 6.978E+01 degrees
- e) 7.676E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.933E+00 V/m2
- b) 9.826E+00 V/m2
- c) 1.081E+01 V/m2
- d) 1.189E+01 V/m2
- e) 1.308E+01 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
- a) 2.036E-14 N
- b) 2.240E-14 N
- c) 2.464E-14 N
- d) 2.710E-14 N
- e) 2.981E-14 N
c05 X0
edit- a) 9.750E-15 N
- b) 1.072E-14 N
- c) 1.180E-14 N
- d) 1.298E-14 N
- e) 1.427E-14 N
- a) 5.272E+01 degrees
- b) 5.799E+01 degrees
- c) 6.379E+01 degrees
- d) 7.017E+01 degrees
- e) 7.719E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.61 m, b=1.7 m. The total charge on the rod is 8 nC.
- a) 5.995E+00 V/m2
- b) 6.595E+00 V/m2
- c) 7.254E+00 V/m2
- d) 7.980E+00 V/m2
- e) 8.778E+00 V/m2
- a) 5.581E+09 N/C2
- b) 6.139E+09 N/C2
- c) 6.753E+09 N/C2
- d) 7.428E+09 N/C2
- e) 8.171E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 6.877E+00 V/m2
- b) 7.565E+00 V/m2
- c) 8.321E+00 V/m2
- d) 9.153E+00 V/m2
- e) 1.007E+01 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 6.171E+01 N/C
- b) 6.788E+01 N/C
- c) 7.467E+01 N/C
- d) 8.214E+01 N/C
- e) 9.035E+01 N/C
c05 X1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.820E-01 V/m2
- b) 8.602E-01 V/m2
- c) 9.462E-01 V/m2
- d) 1.041E+00 V/m2
- e) 1.145E+00 V/m2
- a) 8.259E-15 N
- b) 9.085E-15 N
- c) 9.993E-15 N
- d) 1.099E-14 N
- e) 1.209E-14 N
- a) 1.202E+09 N/C2
- b) 1.322E+09 N/C2
- c) 1.454E+09 N/C2
- d) 1.599E+09 N/C2
- e) 1.759E+09 N/C2
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- a) 2.955E+00 V/m2
- b) 3.250E+00 V/m2
- c) 3.575E+00 V/m2
- d) 3.933E+00 V/m2
- e) 4.326E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 8.471E+01 N/C
- b) 9.318E+01 N/C
- c) 1.025E+02 N/C
- d) 1.127E+02 N/C
- e) 1.240E+02 N/C
c05 X2
edit- a) 5.352E+09 N/C2
- b) 5.887E+09 N/C2
- c) 6.476E+09 N/C2
- d) 7.124E+09 N/C2
- e) 7.836E+09 N/C2
- a) 2.248E-14 N
- b) 2.473E-14 N
- c) 2.721E-14 N
- d) 2.993E-14 N
- e) 3.292E-14 N
- a) 3.961E+01 degrees
- b) 4.357E+01 degrees
- c) 4.793E+01 degrees
- d) 5.272E+01 degrees
- e) 5.799E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.517E+00 V/m2
- b) 8.269E+00 V/m2
- c) 9.096E+00 V/m2
- d) 1.001E+01 V/m2
- e) 1.101E+01 V/m2
5) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 1.694E+02 N/C
- b) 1.864E+02 N/C
- c) 2.050E+02 N/C
- d) 2.255E+02 N/C
- e) 2.480E+02 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- a) 6.311E+00 V/m2
- b) 6.943E+00 V/m2
- c) 7.637E+00 V/m2
- d) 8.401E+00 V/m2
- e) 9.241E+00 V/m2
c05 Y0
edit- a) 8.613E-15 N
- b) 9.474E-15 N
- c) 1.042E-14 N
- d) 1.146E-14 N
- e) 1.261E-14 N
- a) 5.569E+01 degrees
- b) 6.125E+01 degrees
- c) 6.738E+01 degrees
- d) 7.412E+01 degrees
- e) 8.153E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- a) 5.825E+00 V/m2
- b) 6.407E+00 V/m2
- c) 7.048E+00 V/m2
- d) 7.753E+00 V/m2
- e) 8.528E+00 V/m2
- a) 4.142E+09 N/C2
- b) 4.556E+09 N/C2
- c) 5.012E+09 N/C2
- d) 5.513E+09 N/C2
- e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 3.228E+00 V/m2
- b) 3.551E+00 V/m2
- c) 3.906E+00 V/m2
- d) 4.297E+00 V/m2
- e) 4.727E+00 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 4.492E+01 N/C
- b) 4.941E+01 N/C
- c) 5.435E+01 N/C
- d) 5.979E+01 N/C
- e) 6.577E+01 N/C
c05 Y1
edit1) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- a) 4.492E+01 N/C
- b) 4.941E+01 N/C
- c) 5.435E+01 N/C
- d) 5.979E+01 N/C
- e) 6.577E+01 N/C
- a) 5.402E+09 N/C2
- b) 5.943E+09 N/C2
- c) 6.537E+09 N/C2
- d) 7.191E+09 N/C2
- e) 7.910E+09 N/C2
- a) 3.391E-14 N
- b) 3.731E-14 N
- c) 4.104E-14 N
- d) 4.514E-14 N
- e) 4.965E-14 N
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 8.924E-01 V/m2
- b) 9.816E-01 V/m2
- c) 1.080E+00 V/m2
- d) 1.188E+00 V/m2
- e) 1.307E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
- a) 4.602E+00 V/m2
- b) 5.062E+00 V/m2
- c) 5.568E+00 V/m2
- d) 6.125E+00 V/m2
- e) 6.738E+00 V/m2
- a) 3.719E+01 degrees
- b) 4.091E+01 degrees
- c) 4.500E+01 degrees
- d) 4.950E+01 degrees
- e) 5.445E+01 degrees
c05 Y2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- a) 5.465E+00 V/m2
- b) 6.012E+00 V/m2
- c) 6.613E+00 V/m2
- d) 7.274E+00 V/m2
- e) 8.002E+00 V/m2
- a) 2.429E+09 N/C2
- b) 2.672E+09 N/C2
- c) 2.939E+09 N/C2
- d) 3.233E+09 N/C2
- e) 3.556E+09 N/C2
- a) 6.343E+01 degrees
- b) 6.978E+01 degrees
- c) 7.676E+01 degrees
- d) 8.443E+01 degrees
- e) 9.288E+01 degrees
- a) 2.248E-14 N
- b) 2.473E-14 N
- c) 2.721E-14 N
- d) 2.993E-14 N
- e) 3.292E-14 N
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 7.820E-01 V/m2
- b) 8.602E-01 V/m2
- c) 9.462E-01 V/m2
- d) 1.041E+00 V/m2
- e) 1.145E+00 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 4.821E+01 N/C
- b) 5.303E+01 N/C
- c) 5.834E+01 N/C
- d) 6.417E+01 N/C
- e) 7.059E+01 N/C
c05 Z0
edit- a) 3.426E-15 N
- b) 3.768E-15 N
- c) 4.145E-15 N
- d) 4.560E-15 N
- e) 5.015E-15 N
- a) 3.629E+01 degrees
- b) 3.992E+01 degrees
- c) 4.391E+01 degrees
- d) 4.830E+01 degrees
- e) 5.313E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.96 m if a=0.63 m, b=1.4 m. The total charge on the rod is 3 nC.
- a) 3.719E+00 V/m2
- b) 4.091E+00 V/m2
- c) 4.500E+00 V/m2
- d) 4.950E+00 V/m2
- e) 5.445E+00 V/m2
- a) 1.202E+09 N/C2
- b) 1.322E+09 N/C2
- c) 1.454E+09 N/C2
- d) 1.599E+09 N/C2
- e) 1.759E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 4.295E+00 V/m2
- b) 4.724E+00 V/m2
- c) 5.196E+00 V/m2
- d) 5.716E+00 V/m2
- e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 2.652E+01 N/C
- b) 2.917E+01 N/C
- c) 3.209E+01 N/C
- d) 3.529E+01 N/C
- e) 3.882E+01 N/C
c05 Z1
edit- a) 2.036E-14 N
- b) 2.240E-14 N
- c) 2.464E-14 N
- d) 2.710E-14 N
- e) 2.981E-14 N
- a) 3.961E+01 degrees
- b) 4.357E+01 degrees
- c) 4.793E+01 degrees
- d) 5.272E+01 degrees
- e) 5.799E+01 degrees
- a) 1.764E+09 N/C2
- b) 1.941E+09 N/C2
- c) 2.135E+09 N/C2
- d) 2.348E+09 N/C2
- e) 2.583E+09 N/C2
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 5.134E-01 V/m2
- b) 5.648E-01 V/m2
- c) 6.212E-01 V/m2
- d) 6.834E-01 V/m2
- e) 7.517E-01 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- a) 6.534E+01 N/C
- b) 7.187E+01 N/C
- c) 7.906E+01 N/C
- d) 8.696E+01 N/C
- e) 9.566E+01 N/C
c05 Z2
edit- a) 1.028E-14 N
- b) 1.130E-14 N
- c) 1.244E-14 N
- d) 1.368E-14 N
- e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- a) 1.665E+00 V/m2
- b) 1.831E+00 V/m2
- c) 2.014E+00 V/m2
- d) 2.216E+00 V/m2
- e) 2.437E+00 V/m2
- a) 3.159E+09 N/C2
- b) 3.475E+09 N/C2
- c) 3.823E+09 N/C2
- d) 4.205E+09 N/C2
- e) 4.626E+09 N/C2
- a) 5.377E+01 degrees
- b) 5.914E+01 degrees
- c) 6.506E+01 degrees
- d) 7.157E+01 degrees
- e) 7.872E+01 degrees
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- a) 3.214E+01 N/C
- b) 3.536E+01 N/C
- c) 3.889E+01 N/C
- d) 4.278E+01 N/C
- e) 4.706E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- a) 9.459E+00 V/m2
- b) 1.040E+01 V/m2
- c) 1.145E+01 V/m2
- d) 1.259E+01 V/m2
- e) 1.385E+01 V/m2
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- blank page
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
- of 10 blank lines to separate exams from keys
Key: A0
edit- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.4 m. Evaluate at x=1.1 m if a=0.69 m, b=2.2 m. The total charge on the rod is 6 nC.
- -a) 3.161E+00 V/m2
- -b) 3.477E+00 V/m2
- -c) 3.825E+00 V/m2
- -d) 4.208E+00 V/m2
- +e) 4.628E+00 V/m2
- -a) 7.119E+09 N/C2
- -b) 7.831E+09 N/C2
- +c) 8.614E+09 N/C2
- -d) 9.476E+09 N/C2
- -e) 1.042E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.606E+00 V/m2
- -b) 1.767E+00 V/m2
- -c) 1.943E+00 V/m2
- -d) 2.138E+00 V/m2
- -e) 2.351E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- +a) 5.647E+01 N/C
- -b) 6.212E+01 N/C
- -c) 6.833E+01 N/C
- -d) 7.516E+01 N/C
- -e) 8.268E+01 N/C
Key: A1
edit1) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.500E+01 N/C
- -b) 3.850E+01 N/C
- +c) 4.235E+01 N/C
- -d) 4.659E+01 N/C
- -e) 5.125E+01 N/C
- -a) 9.750E-15 N
- -b) 1.072E-14 N
- -c) 1.180E-14 N
- -d) 1.298E-14 N
- +e) 1.427E-14 N
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 9.459E+00 V/m2
- +b) 1.040E+01 V/m2
- -c) 1.145E+01 V/m2
- -d) 1.259E+01 V/m2
- -e) 1.385E+01 V/m2
- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
- +a) 4.602E+00 V/m2
- -b) 5.062E+00 V/m2
- -c) 5.568E+00 V/m2
- -d) 6.125E+00 V/m2
- -e) 6.738E+00 V/m2
- -a) 4.766E+01 degrees
- -b) 5.243E+01 degrees
- -c) 5.767E+01 degrees
- +d) 6.343E+01 degrees
- -e) 6.978E+01 degrees
Key: A2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 5.134E-01 V/m2
- +b) 5.648E-01 V/m2
- -c) 6.212E-01 V/m2
- -d) 6.834E-01 V/m2
- -e) 7.517E-01 V/m2
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
3) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- -a) 9.655E+00 V/m2
- -b) 1.062E+01 V/m2
- -c) 1.168E+01 V/m2
- +d) 1.285E+01 V/m2
- -e) 1.414E+01 V/m2
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
Key: B0
edit- -a) 9.750E-15 N
- -b) 1.072E-14 N
- -c) 1.180E-14 N
- -d) 1.298E-14 N
- +e) 1.427E-14 N
- -a) 5.767E+01 degrees
- +b) 6.343E+01 degrees
- -c) 6.978E+01 degrees
- -d) 7.676E+01 degrees
- -e) 8.443E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
- -a) 1.764E+09 N/C2
- -b) 1.941E+09 N/C2
- +c) 2.135E+09 N/C2
- -d) 2.348E+09 N/C2
- -e) 2.583E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.022E+00 V/m2
- -b) 1.125E+00 V/m2
- -c) 1.237E+00 V/m2
- -d) 1.361E+00 V/m2
- -e) 1.497E+00 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 3.428E+01 N/C
- -b) 3.771E+01 N/C
- -c) 4.148E+01 N/C
- -d) 4.563E+01 N/C
- +e) 5.020E+01 N/C
Key: B1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 1.258E+00 V/m2
- -b) 1.384E+00 V/m2
- -c) 1.522E+00 V/m2
- +d) 1.674E+00 V/m2
- -e) 1.842E+00 V/m2
- -a) 2.429E+09 N/C2
- +b) 2.672E+09 N/C2
- -c) 2.939E+09 N/C2
- -d) 3.233E+09 N/C2
- -e) 3.556E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.96 m if a=0.63 m, b=1.4 m. The total charge on the rod is 3 nC.
- -a) 3.719E+00 V/m2
- +b) 4.091E+00 V/m2
- -c) 4.500E+00 V/m2
- -d) 4.950E+00 V/m2
- -e) 5.445E+00 V/m2
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
- +a) 5.732E-15 N
- -b) 6.305E-15 N
- -c) 6.936E-15 N
- -d) 7.629E-15 N
- -e) 8.392E-15 N
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
Key: B2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 8.690E+00 V/m2
- -b) 9.559E+00 V/m2
- +c) 1.051E+01 V/m2
- -d) 1.157E+01 V/m2
- -e) 1.272E+01 V/m2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 5.647E+00 V/m2
- -b) 6.212E+00 V/m2
- -c) 6.833E+00 V/m2
- -d) 7.517E+00 V/m2
- -e) 8.268E+00 V/m2
- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees
- -a) 7.119E+09 N/C2
- -b) 7.831E+09 N/C2
- +c) 8.614E+09 N/C2
- -d) 9.476E+09 N/C2
- -e) 1.042E+10 N/C2
- -a) 3.876E-14 N
- -b) 4.263E-14 N
- -c) 4.690E-14 N
- +d) 5.159E-14 N
- -e) 5.675E-14 N
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
Key: C0
edit- -a) 5.014E-14 N
- -b) 5.515E-14 N
- -c) 6.067E-14 N
- -d) 6.674E-14 N
- +e) 7.341E-14 N
- -a) 6.125E+01 degrees
- +b) 6.738E+01 degrees
- -c) 7.412E+01 degrees
- -d) 8.153E+01 degrees
- -e) 8.968E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
- +a) 8.336E+09 N/C2
- -b) 9.170E+09 N/C2
- -c) 1.009E+10 N/C2
- -d) 1.110E+10 N/C2
- -e) 1.220E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 9.459E+00 V/m2
- +b) 1.040E+01 V/m2
- -c) 1.145E+01 V/m2
- -d) 1.259E+01 V/m2
- -e) 1.385E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
Key: C1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 5.647E+00 V/m2
- -b) 6.212E+00 V/m2
- -c) 6.833E+00 V/m2
- -d) 7.517E+00 V/m2
- -e) 8.268E+00 V/m2
2) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 9.412E+01 N/C
- -b) 1.035E+02 N/C
- -c) 1.139E+02 N/C
- -d) 1.253E+02 N/C
- -e) 1.378E+02 N/C
- -a) 1.308E-13 N
- -b) 1.439E-13 N
- -c) 1.583E-13 N
- +d) 1.741E-13 N
- -e) 1.915E-13 N
- -a) 5.914E+01 degrees
- -b) 6.506E+01 degrees
- +c) 7.157E+01 degrees
- -d) 7.872E+01 degrees
- -e) 8.659E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- -a) 9.655E+00 V/m2
- -b) 1.062E+01 V/m2
- -c) 1.168E+01 V/m2
- +d) 1.285E+01 V/m2
- -e) 1.414E+01 V/m2
- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
Key: C2
edit- -a) 3.426E-15 N
- -b) 3.768E-15 N
- -c) 4.145E-15 N
- -d) 4.560E-15 N
- +e) 5.015E-15 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
- -a) 1.202E+09 N/C2
- -b) 1.322E+09 N/C2
- -c) 1.454E+09 N/C2
- -d) 1.599E+09 N/C2
- +e) 1.759E+09 N/C2
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
5) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 6.534E+01 N/C
- -b) 7.187E+01 N/C
- +c) 7.906E+01 N/C
- -d) 8.696E+01 N/C
- -e) 9.566E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 1.258E+00 V/m2
- -b) 1.384E+00 V/m2
- -c) 1.522E+00 V/m2
- +d) 1.674E+00 V/m2
- -e) 1.842E+00 V/m2
Key: D0
edit- -a) 3.426E-15 N
- -b) 3.768E-15 N
- -c) 4.145E-15 N
- -d) 4.560E-15 N
- +e) 5.015E-15 N
- -a) 6.125E+01 degrees
- +b) 6.738E+01 degrees
- -c) 7.412E+01 degrees
- -d) 8.153E+01 degrees
- -e) 8.968E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.4 m. Evaluate at x=1.1 m if a=0.69 m, b=2.2 m. The total charge on the rod is 6 nC.
- -a) 3.161E+00 V/m2
- -b) 3.477E+00 V/m2
- -c) 3.825E+00 V/m2
- -d) 4.208E+00 V/m2
- +e) 4.628E+00 V/m2
- -a) 1.764E+09 N/C2
- -b) 1.941E+09 N/C2
- +c) 2.135E+09 N/C2
- -d) 2.348E+09 N/C2
- -e) 2.583E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.933E+00 V/m2
- -b) 9.826E+00 V/m2
- +c) 1.081E+01 V/m2
- -d) 1.189E+01 V/m2
- -e) 1.308E+01 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.357E+01 N/C
- -b) 2.593E+01 N/C
- -c) 2.852E+01 N/C
- +d) 3.137E+01 N/C
- -e) 3.451E+01 N/C
Key: D1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
- -a) 1.028E-14 N
- -b) 1.130E-14 N
- -c) 1.244E-14 N
- -d) 1.368E-14 N
- +e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- -a) 3.610E+00 V/m2
- +b) 3.971E+00 V/m2
- -c) 4.368E+00 V/m2
- -d) 4.804E+00 V/m2
- -e) 5.285E+00 V/m2
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 7.701E+01 N/C
- +b) 8.471E+01 N/C
- -c) 9.318E+01 N/C
- -d) 1.025E+02 N/C
- -e) 1.127E+02 N/C
- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
- -a) 4.743E+01 degrees
- -b) 5.217E+01 degrees
- -c) 5.739E+01 degrees
- -d) 6.313E+01 degrees
- +e) 6.944E+01 degrees
Key: D2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- -a) 5.465E+00 V/m2
- -b) 6.012E+00 V/m2
- -c) 6.613E+00 V/m2
- +d) 7.274E+00 V/m2
- -e) 8.002E+00 V/m2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
- -a) 3.876E-14 N
- -b) 4.263E-14 N
- -c) 4.690E-14 N
- +d) 5.159E-14 N
- -e) 5.675E-14 N
- -a) 7.119E+09 N/C2
- -b) 7.831E+09 N/C2
- +c) 8.614E+09 N/C2
- -d) 9.476E+09 N/C2
- -e) 1.042E+10 N/C2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.357E+01 N/C
- -b) 2.593E+01 N/C
- -c) 2.852E+01 N/C
- +d) 3.137E+01 N/C
- -e) 3.451E+01 N/C
Key: E0
edit- -a) 5.243E-14 N
- +b) 5.768E-14 N
- -c) 6.344E-14 N
- -d) 6.979E-14 N
- -e) 7.677E-14 N
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 6.311E+00 V/m2
- -b) 6.943E+00 V/m2
- +c) 7.637E+00 V/m2
- -d) 8.401E+00 V/m2
- -e) 9.241E+00 V/m2
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.228E+00 V/m2
- -b) 3.551E+00 V/m2
- -c) 3.906E+00 V/m2
- -d) 4.297E+00 V/m2
- +e) 4.727E+00 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 3.428E+01 N/C
- -b) 3.771E+01 N/C
- -c) 4.148E+01 N/C
- -d) 4.563E+01 N/C
- +e) 5.020E+01 N/C
Key: E1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- -a) 5.267E+00 V/m2
- -b) 5.794E+00 V/m2
- -c) 6.374E+00 V/m2
- +d) 7.011E+00 V/m2
- -e) 7.712E+00 V/m2
- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
- -a) 3.876E-14 N
- -b) 4.263E-14 N
- -c) 4.690E-14 N
- +d) 5.159E-14 N
- -e) 5.675E-14 N
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 2.898E+01 V/m2
- -b) 3.188E+01 V/m2
- -c) 3.507E+01 V/m2
- -d) 3.857E+01 V/m2
- -e) 4.243E+01 V/m2
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 8.471E+01 N/C
- -b) 9.318E+01 N/C
- -c) 1.025E+02 N/C
- -d) 1.127E+02 N/C
- -e) 1.240E+02 N/C
Key: E2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.52 m if a=0.88 m, b=1.3 m. The total charge on the rod is 6 nC.
- -a) 6.804E+00 V/m2
- +b) 7.485E+00 V/m2
- -c) 8.233E+00 V/m2
- -d) 9.056E+00 V/m2
- -e) 9.962E+00 V/m2
- -a) 2.544E-14 N
- -b) 2.798E-14 N
- -c) 3.078E-14 N
- +d) 3.385E-14 N
- -e) 3.724E-14 N
3) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.571E+01 N/C
- -b) 2.828E+01 N/C
- -c) 3.111E+01 N/C
- -d) 3.422E+01 N/C
- +e) 3.765E+01 N/C
- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.517E+00 V/m2
- -b) 8.269E+00 V/m2
- -c) 9.096E+00 V/m2
- -d) 1.001E+01 V/m2
- +e) 1.101E+01 V/m2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
Key: F0
edit- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 8.690E+00 V/m2
- -b) 9.559E+00 V/m2
- +c) 1.051E+01 V/m2
- -d) 1.157E+01 V/m2
- -e) 1.272E+01 V/m2
- -a) 4.142E+09 N/C2
- -b) 4.556E+09 N/C2
- +c) 5.012E+09 N/C2
- -d) 5.513E+09 N/C2
- -e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 2.567E+01 V/m2
- -b) 2.824E+01 V/m2
- -c) 3.106E+01 V/m2
- -d) 3.417E+01 V/m2
- +e) 3.759E+01 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 4.492E+01 N/C
- +b) 4.941E+01 N/C
- -c) 5.435E+01 N/C
- -d) 5.979E+01 N/C
- -e) 6.577E+01 N/C
Key: F1
edit- -a) 1.308E-13 N
- -b) 1.439E-13 N
- -c) 1.583E-13 N
- +d) 1.741E-13 N
- -e) 1.915E-13 N
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.606E+00 V/m2
- -b) 1.767E+00 V/m2
- -c) 1.943E+00 V/m2
- -d) 2.138E+00 V/m2
- -e) 2.351E+00 V/m2
3) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 7.000E+01 N/C
- -b) 7.701E+01 N/C
- +c) 8.471E+01 N/C
- -d) 9.318E+01 N/C
- -e) 1.025E+02 N/C
- -a) 4.142E+09 N/C2
- -b) 4.556E+09 N/C2
- +c) 5.012E+09 N/C2
- -d) 5.513E+09 N/C2
- -e) 6.064E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- -a) 3.610E+00 V/m2
- +b) 3.971E+00 V/m2
- -c) 4.368E+00 V/m2
- -d) 4.804E+00 V/m2
- -e) 5.285E+00 V/m2
- -a) 5.377E+01 degrees
- -b) 5.914E+01 degrees
- -c) 6.506E+01 degrees
- +d) 7.157E+01 degrees
- -e) 7.872E+01 degrees
Key: F2
edit- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- -a) 3.385E+00 V/m2
- -b) 3.724E+00 V/m2
- -c) 4.096E+00 V/m2
- +d) 4.506E+00 V/m2
- -e) 4.957E+00 V/m2
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- +a) 5.647E+01 N/C
- -b) 6.212E+01 N/C
- -c) 6.833E+01 N/C
- -d) 7.516E+01 N/C
- -e) 8.268E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
Key: G0
edit- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
- -a) 5.914E+01 degrees
- -b) 6.506E+01 degrees
- +c) 7.157E+01 degrees
- -d) 7.872E+01 degrees
- -e) 8.659E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 8.690E+00 V/m2
- -b) 9.559E+00 V/m2
- +c) 1.051E+01 V/m2
- -d) 1.157E+01 V/m2
- -e) 1.272E+01 V/m2
- +a) 8.336E+09 N/C2
- -b) 9.170E+09 N/C2
- -c) 1.009E+10 N/C2
- -d) 1.110E+10 N/C2
- -e) 1.220E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 9.459E+00 V/m2
- +b) 1.040E+01 V/m2
- -c) 1.145E+01 V/m2
- -d) 1.259E+01 V/m2
- -e) 1.385E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
Key: G1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees
- -a) 2.036E-14 N
- -b) 2.240E-14 N
- +c) 2.464E-14 N
- -d) 2.710E-14 N
- -e) 2.981E-14 N
4) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 3.428E+01 N/C
- -b) 3.771E+01 N/C
- -c) 4.148E+01 N/C
- -d) 4.563E+01 N/C
- +e) 5.020E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.4 m. Evaluate at x=1.1 m if a=0.69 m, b=2.2 m. The total charge on the rod is 6 nC.
- -a) 3.161E+00 V/m2
- -b) 3.477E+00 V/m2
- -c) 3.825E+00 V/m2
- -d) 4.208E+00 V/m2
- +e) 4.628E+00 V/m2
- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
Key: G2
edit- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
2) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 3.428E+01 N/C
- -b) 3.771E+01 N/C
- -c) 4.148E+01 N/C
- -d) 4.563E+01 N/C
- +e) 5.020E+01 N/C
- -a) 5.243E-14 N
- +b) 5.768E-14 N
- -c) 6.344E-14 N
- -d) 6.979E-14 N
- -e) 7.677E-14 N
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 9.459E+00 V/m2
- +b) 1.040E+01 V/m2
- -c) 1.145E+01 V/m2
- -d) 1.259E+01 V/m2
- -e) 1.385E+01 V/m2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- -a) 5.465E+00 V/m2
- -b) 6.012E+00 V/m2
- -c) 6.613E+00 V/m2
- +d) 7.274E+00 V/m2
- -e) 8.002E+00 V/m2
Key: H0
edit- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
- -a) 4.766E+01 degrees
- -b) 5.243E+01 degrees
- -c) 5.767E+01 degrees
- +d) 6.343E+01 degrees
- -e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- -a) 9.655E+00 V/m2
- -b) 1.062E+01 V/m2
- -c) 1.168E+01 V/m2
- +d) 1.285E+01 V/m2
- -e) 1.414E+01 V/m2
- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.722E-01 V/m2
- -b) 4.094E-01 V/m2
- -c) 4.504E-01 V/m2
- +d) 4.954E-01 V/m2
- -e) 5.450E-01 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.357E+01 N/C
- -b) 2.593E+01 N/C
- -c) 2.852E+01 N/C
- +d) 3.137E+01 N/C
- -e) 3.451E+01 N/C
Key: H1
edit1) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 6.534E+01 N/C
- -b) 7.187E+01 N/C
- +c) 7.906E+01 N/C
- -d) 8.696E+01 N/C
- -e) 9.566E+01 N/C
- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.722E-01 V/m2
- -b) 4.094E-01 V/m2
- -c) 4.504E-01 V/m2
- +d) 4.954E-01 V/m2
- -e) 5.450E-01 V/m2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
Key: H2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 1.399E+01 V/m2
- +b) 1.539E+01 V/m2
- -c) 1.693E+01 V/m2
- -d) 1.862E+01 V/m2
- -e) 2.049E+01 V/m2
- -a) 4.743E+01 degrees
- -b) 5.217E+01 degrees
- -c) 5.739E+01 degrees
- -d) 6.313E+01 degrees
- +e) 6.944E+01 degrees
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
5) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.500E+01 N/C
- -b) 3.850E+01 N/C
- +c) 4.235E+01 N/C
- -d) 4.659E+01 N/C
- -e) 5.125E+01 N/C
- -a) 1.202E+09 N/C2
- -b) 1.322E+09 N/C2
- -c) 1.454E+09 N/C2
- -d) 1.599E+09 N/C2
- +e) 1.759E+09 N/C2
Key: I0
edit- -a) 1.308E-13 N
- -b) 1.439E-13 N
- -c) 1.583E-13 N
- +d) 1.741E-13 N
- -e) 1.915E-13 N
- -a) 5.062E+01 degrees
- -b) 5.569E+01 degrees
- -c) 6.125E+01 degrees
- +d) 6.738E+01 degrees
- -e) 7.412E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
- -a) 6.925E+09 N/C2
- -b) 7.617E+09 N/C2
- +c) 8.379E+09 N/C2
- -d) 9.217E+09 N/C2
- -e) 1.014E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 5.647E+00 V/m2
- -b) 6.212E+00 V/m2
- -c) 6.833E+00 V/m2
- -d) 7.517E+00 V/m2
- -e) 8.268E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
Key: I1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- -a) 5.465E+00 V/m2
- -b) 6.012E+00 V/m2
- -c) 6.613E+00 V/m2
- +d) 7.274E+00 V/m2
- -e) 8.002E+00 V/m2
- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
- -a) 3.961E+01 degrees
- -b) 4.357E+01 degrees
- -c) 4.793E+01 degrees
- -d) 5.272E+01 degrees
- +e) 5.799E+01 degrees
- -a) 6.925E+09 N/C2
- -b) 7.617E+09 N/C2
- +c) 8.379E+09 N/C2
- -d) 9.217E+09 N/C2
- -e) 1.014E+10 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
Key: I2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 5.647E+00 V/m2
- -b) 6.212E+00 V/m2
- -c) 6.833E+00 V/m2
- -d) 7.517E+00 V/m2
- -e) 8.268E+00 V/m2
- -a) 5.914E+01 degrees
- -b) 6.506E+01 degrees
- +c) 7.157E+01 degrees
- -d) 7.872E+01 degrees
- -e) 8.659E+01 degrees
- -a) 2.248E-14 N
- -b) 2.473E-14 N
- +c) 2.721E-14 N
- -d) 2.993E-14 N
- -e) 3.292E-14 N
- -a) 2.429E+09 N/C2
- +b) 2.672E+09 N/C2
- -c) 2.939E+09 N/C2
- -d) 3.233E+09 N/C2
- -e) 3.556E+09 N/C2
5) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.571E+01 N/C
- -b) 2.828E+01 N/C
- -c) 3.111E+01 N/C
- -d) 3.422E+01 N/C
- +e) 3.765E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- -a) 3.385E+00 V/m2
- -b) 3.724E+00 V/m2
- -c) 4.096E+00 V/m2
- +d) 4.506E+00 V/m2
- -e) 4.957E+00 V/m2
Key: J0
edit- -a) 2.248E-14 N
- -b) 2.473E-14 N
- +c) 2.721E-14 N
- -d) 2.993E-14 N
- -e) 3.292E-14 N
- -a) 6.125E+01 degrees
- +b) 6.738E+01 degrees
- -c) 7.412E+01 degrees
- -d) 8.153E+01 degrees
- -e) 8.968E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
- -a) 4.142E+09 N/C2
- -b) 4.556E+09 N/C2
- +c) 5.012E+09 N/C2
- -d) 5.513E+09 N/C2
- -e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
Key: J1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.61 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 5.995E+00 V/m2
- -b) 6.595E+00 V/m2
- +c) 7.254E+00 V/m2
- -d) 7.980E+00 V/m2
- -e) 8.778E+00 V/m2
2) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 9.412E+01 N/C
- -b) 1.035E+02 N/C
- -c) 1.139E+02 N/C
- -d) 1.253E+02 N/C
- -e) 1.378E+02 N/C
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.606E+00 V/m2
- -b) 1.767E+00 V/m2
- -c) 1.943E+00 V/m2
- -d) 2.138E+00 V/m2
- -e) 2.351E+00 V/m2
- -a) 2.036E-14 N
- -b) 2.240E-14 N
- +c) 2.464E-14 N
- -d) 2.710E-14 N
- -e) 2.981E-14 N
- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
- -a) 3.961E+01 degrees
- -b) 4.357E+01 degrees
- -c) 4.793E+01 degrees
- -d) 5.272E+01 degrees
- +e) 5.799E+01 degrees
Key: J2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.022E+00 V/m2
- -b) 1.125E+00 V/m2
- -c) 1.237E+00 V/m2
- -d) 1.361E+00 V/m2
- -e) 1.497E+00 V/m2
2) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 1.694E+02 N/C
- -b) 1.864E+02 N/C
- -c) 2.050E+02 N/C
- -d) 2.255E+02 N/C
- -e) 2.480E+02 N/C
- -a) 3.426E-15 N
- -b) 3.768E-15 N
- -c) 4.145E-15 N
- -d) 4.560E-15 N
- +e) 5.015E-15 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
- -a) 5.767E+01 degrees
- +b) 6.343E+01 degrees
- -c) 6.978E+01 degrees
- -d) 7.676E+01 degrees
- -e) 8.443E+01 degrees
- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
Key: K0
edit- -a) 2.248E-14 N
- -b) 2.473E-14 N
- +c) 2.721E-14 N
- -d) 2.993E-14 N
- -e) 3.292E-14 N
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.52 m if a=0.88 m, b=1.3 m. The total charge on the rod is 6 nC.
- -a) 6.804E+00 V/m2
- +b) 7.485E+00 V/m2
- -c) 8.233E+00 V/m2
- -d) 9.056E+00 V/m2
- -e) 9.962E+00 V/m2
- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 6.877E+00 V/m2
- -b) 7.565E+00 V/m2
- +c) 8.321E+00 V/m2
- -d) 9.153E+00 V/m2
- -e) 1.007E+01 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
Key: K1
edit1) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
- +a) 4.788E+09 N/C2
- -b) 5.267E+09 N/C2
- -c) 5.793E+09 N/C2
- -d) 6.373E+09 N/C2
- -e) 7.010E+09 N/C2
- +a) 5.732E-15 N
- -b) 6.305E-15 N
- -c) 6.936E-15 N
- -d) 7.629E-15 N
- -e) 8.392E-15 N
- -a) 6.125E+01 degrees
- +b) 6.738E+01 degrees
- -c) 7.412E+01 degrees
- -d) 8.153E+01 degrees
- -e) 8.968E+01 degrees
Key: K2
edit1) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 8.471E+01 N/C
- -b) 9.318E+01 N/C
- -c) 1.025E+02 N/C
- -d) 1.127E+02 N/C
- -e) 1.240E+02 N/C
- -a) 5.243E-14 N
- +b) 5.768E-14 N
- -c) 6.344E-14 N
- -d) 6.979E-14 N
- -e) 7.677E-14 N
- -a) 4.766E+01 degrees
- -b) 5.243E+01 degrees
- -c) 5.767E+01 degrees
- +d) 6.343E+01 degrees
- -e) 6.978E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.517E+00 V/m2
- -b) 8.269E+00 V/m2
- -c) 9.096E+00 V/m2
- -d) 1.001E+01 V/m2
- +e) 1.101E+01 V/m2
- +a) 4.788E+09 N/C2
- -b) 5.267E+09 N/C2
- -c) 5.793E+09 N/C2
- -d) 6.373E+09 N/C2
- -e) 7.010E+09 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- -a) 3.610E+00 V/m2
- +b) 3.971E+00 V/m2
- -c) 4.368E+00 V/m2
- -d) 4.804E+00 V/m2
- -e) 5.285E+00 V/m2
Key: L0
edit- -a) 2.544E-14 N
- -b) 2.798E-14 N
- -c) 3.078E-14 N
- +d) 3.385E-14 N
- -e) 3.724E-14 N
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 7.000E+01 N/C
- -b) 7.701E+01 N/C
- +c) 8.471E+01 N/C
- -d) 9.318E+01 N/C
- -e) 1.025E+02 N/C
Key: L1
edit- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- -a) 5.267E+00 V/m2
- -b) 5.794E+00 V/m2
- -c) 6.374E+00 V/m2
- +d) 7.011E+00 V/m2
- -e) 7.712E+00 V/m2
- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
- +a) 5.732E-15 N
- -b) 6.305E-15 N
- -c) 6.936E-15 N
- -d) 7.629E-15 N
- -e) 8.392E-15 N
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.253E-01 V/m2
- -b) 9.079E-01 V/m2
- +c) 9.987E-01 V/m2
- -d) 1.099E+00 V/m2
- -e) 1.208E+00 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
Key: L2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.83 m if a=0.7 m, b=1.8 m. The total charge on the rod is 9 nC.
- +a) 6.897E+00 V/m2
- -b) 7.587E+00 V/m2
- -c) 8.345E+00 V/m2
- -d) 9.180E+00 V/m2
- -e) 1.010E+01 V/m2
- -a) 4.091E+01 degrees
- +b) 4.500E+01 degrees
- -c) 4.950E+01 degrees
- -d) 5.445E+01 degrees
- -e) 5.990E+01 degrees
3) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
- +a) 5.732E-15 N
- -b) 6.305E-15 N
- -c) 6.936E-15 N
- -d) 7.629E-15 N
- -e) 8.392E-15 N
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.722E-01 V/m2
- -b) 4.094E-01 V/m2
- -c) 4.504E-01 V/m2
- +d) 4.954E-01 V/m2
- -e) 5.450E-01 V/m2
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
Key: M0
edit- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
- -a) 4.743E+01 degrees
- -b) 5.217E+01 degrees
- -c) 5.739E+01 degrees
- -d) 6.313E+01 degrees
- +e) 6.944E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 6.311E+00 V/m2
- -b) 6.943E+00 V/m2
- +c) 7.637E+00 V/m2
- -d) 8.401E+00 V/m2
- -e) 9.241E+00 V/m2
- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.933E+00 V/m2
- -b) 9.826E+00 V/m2
- +c) 1.081E+01 V/m2
- -d) 1.189E+01 V/m2
- -e) 1.308E+01 V/m2
6) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 1.694E+02 N/C
- -b) 1.864E+02 N/C
- -c) 2.050E+02 N/C
- -d) 2.255E+02 N/C
- -e) 2.480E+02 N/C
Key: M1
edit- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.820E-01 V/m2
- +b) 8.602E-01 V/m2
- -c) 9.462E-01 V/m2
- -d) 1.041E+00 V/m2
- -e) 1.145E+00 V/m2
- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- -a) 3.610E+00 V/m2
- +b) 3.971E+00 V/m2
- -c) 4.368E+00 V/m2
- -d) 4.804E+00 V/m2
- -e) 5.285E+00 V/m2
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 7.000E+01 N/C
- -b) 7.701E+01 N/C
- +c) 8.471E+01 N/C
- -d) 9.318E+01 N/C
- -e) 1.025E+02 N/C
Key: M2
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
4) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 4.492E+01 N/C
- +b) 4.941E+01 N/C
- -c) 5.435E+01 N/C
- -d) 5.979E+01 N/C
- -e) 6.577E+01 N/C
- -a) 2.544E-14 N
- -b) 2.798E-14 N
- -c) 3.078E-14 N
- +d) 3.385E-14 N
- -e) 3.724E-14 N
- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
Key: N0
edit- -a) 1.473E-14 N
- -b) 1.620E-14 N
- -c) 1.782E-14 N
- -d) 1.960E-14 N
- +e) 2.156E-14 N
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.820E-01 V/m2
- +b) 8.602E-01 V/m2
- -c) 9.462E-01 V/m2
- -d) 1.041E+00 V/m2
- -e) 1.145E+00 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
Key: N1
edit- +a) 8.336E+09 N/C2
- -b) 9.170E+09 N/C2
- -c) 1.009E+10 N/C2
- -d) 1.110E+10 N/C2
- -e) 1.220E+10 N/C2
- -a) 5.014E-14 N
- -b) 5.515E-14 N
- -c) 6.067E-14 N
- -d) 6.674E-14 N
- +e) 7.341E-14 N
3)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
4) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.571E+01 N/C
- -b) 2.828E+01 N/C
- -c) 3.111E+01 N/C
- -d) 3.422E+01 N/C
- +e) 3.765E+01 N/C
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- -a) 3.385E+00 V/m2
- -b) 3.724E+00 V/m2
- -c) 4.096E+00 V/m2
- +d) 4.506E+00 V/m2
- -e) 4.957E+00 V/m2
Key: N2
edit1) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 9.412E+01 N/C
- -b) 1.035E+02 N/C
- -c) 1.139E+02 N/C
- -d) 1.253E+02 N/C
- -e) 1.378E+02 N/C
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 6.877E+00 V/m2
- -b) 7.565E+00 V/m2
- +c) 8.321E+00 V/m2
- -d) 9.153E+00 V/m2
- -e) 1.007E+01 V/m2
- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
- -a) 1.473E-14 N
- -b) 1.620E-14 N
- -c) 1.782E-14 N
- -d) 1.960E-14 N
- +e) 2.156E-14 N
- -a) 5.914E+01 degrees
- -b) 6.506E+01 degrees
- +c) 7.157E+01 degrees
- -d) 7.872E+01 degrees
- -e) 8.659E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 1.399E+01 V/m2
- +b) 1.539E+01 V/m2
- -c) 1.693E+01 V/m2
- -d) 1.862E+01 V/m2
- -e) 2.049E+01 V/m2
Key: O0
edit- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
- -a) 4.766E+01 degrees
- -b) 5.243E+01 degrees
- -c) 5.767E+01 degrees
- +d) 6.343E+01 degrees
- -e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- -a) 3.610E+00 V/m2
- +b) 3.971E+00 V/m2
- -c) 4.368E+00 V/m2
- -d) 4.804E+00 V/m2
- -e) 5.285E+00 V/m2
- -a) 4.142E+09 N/C2
- -b) 4.556E+09 N/C2
- +c) 5.012E+09 N/C2
- -d) 5.513E+09 N/C2
- -e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 2.567E+01 V/m2
- -b) 2.824E+01 V/m2
- -c) 3.106E+01 V/m2
- -d) 3.417E+01 V/m2
- +e) 3.759E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 8.471E+01 N/C
- -b) 9.318E+01 N/C
- -c) 1.025E+02 N/C
- -d) 1.127E+02 N/C
- -e) 1.240E+02 N/C
Key: O1
edit- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
- -a) 3.961E+01 degrees
- -b) 4.357E+01 degrees
- -c) 4.793E+01 degrees
- -d) 5.272E+01 degrees
- +e) 5.799E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.52 m if a=0.88 m, b=1.3 m. The total charge on the rod is 6 nC.
- -a) 6.804E+00 V/m2
- +b) 7.485E+00 V/m2
- -c) 8.233E+00 V/m2
- -d) 9.056E+00 V/m2
- -e) 9.962E+00 V/m2
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- +a) 5.647E+01 N/C
- -b) 6.212E+01 N/C
- -c) 6.833E+01 N/C
- -d) 7.516E+01 N/C
- -e) 8.268E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 5.134E-01 V/m2
- +b) 5.648E-01 V/m2
- -c) 6.212E-01 V/m2
- -d) 6.834E-01 V/m2
- -e) 7.517E-01 V/m2
Key: O2
edit- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
2) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 3.428E+01 N/C
- -b) 3.771E+01 N/C
- -c) 4.148E+01 N/C
- -d) 4.563E+01 N/C
- +e) 5.020E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 1.258E+00 V/m2
- -b) 1.384E+00 V/m2
- -c) 1.522E+00 V/m2
- +d) 1.674E+00 V/m2
- -e) 1.842E+00 V/m2
- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
- -a) 6.925E+09 N/C2
- -b) 7.617E+09 N/C2
- +c) 8.379E+09 N/C2
- -d) 9.217E+09 N/C2
- -e) 1.014E+10 N/C2
Key: P0
edit- -a) 5.243E-14 N
- +b) 5.768E-14 N
- -c) 6.344E-14 N
- -d) 6.979E-14 N
- -e) 7.677E-14 N
- -a) 3.629E+01 degrees
- -b) 3.992E+01 degrees
- -c) 4.391E+01 degrees
- -d) 4.830E+01 degrees
- +e) 5.313E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.517E+00 V/m2
- -b) 8.269E+00 V/m2
- -c) 9.096E+00 V/m2
- -d) 1.001E+01 V/m2
- +e) 1.101E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 7.000E+01 N/C
- -b) 7.701E+01 N/C
- +c) 8.471E+01 N/C
- -d) 9.318E+01 N/C
- -e) 1.025E+02 N/C
Key: P1
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
2) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.652E+01 N/C
- -b) 2.917E+01 N/C
- -c) 3.209E+01 N/C
- +d) 3.529E+01 N/C
- -e) 3.882E+01 N/C
- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
- -a) 2.544E-14 N
- -b) 2.798E-14 N
- -c) 3.078E-14 N
- +d) 3.385E-14 N
- -e) 3.724E-14 N
- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.722E-01 V/m2
- -b) 4.094E-01 V/m2
- -c) 4.504E-01 V/m2
- +d) 4.954E-01 V/m2
- -e) 5.450E-01 V/m2
Key: P2
edit- +a) 8.336E+09 N/C2
- -b) 9.170E+09 N/C2
- -c) 1.009E+10 N/C2
- -d) 1.110E+10 N/C2
- -e) 1.220E+10 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.253E-01 V/m2
- -b) 9.079E-01 V/m2
- +c) 9.987E-01 V/m2
- -d) 1.099E+00 V/m2
- -e) 1.208E+00 V/m2
- -a) 3.876E-14 N
- -b) 4.263E-14 N
- -c) 4.690E-14 N
- +d) 5.159E-14 N
- -e) 5.675E-14 N
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
Key: Q0
edit- -a) 1.308E-13 N
- -b) 1.439E-13 N
- -c) 1.583E-13 N
- +d) 1.741E-13 N
- -e) 1.915E-13 N
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- -a) 5.267E+00 V/m2
- -b) 5.794E+00 V/m2
- -c) 6.374E+00 V/m2
- +d) 7.011E+00 V/m2
- -e) 7.712E+00 V/m2
- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.820E-01 V/m2
- +b) 8.602E-01 V/m2
- -c) 9.462E-01 V/m2
- -d) 1.041E+00 V/m2
- -e) 1.145E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
Key: Q1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
- -a) 5.243E-14 N
- +b) 5.768E-14 N
- -c) 6.344E-14 N
- -d) 6.979E-14 N
- -e) 7.677E-14 N
- -a) 3.629E+01 degrees
- -b) 3.992E+01 degrees
- -c) 4.391E+01 degrees
- -d) 4.830E+01 degrees
- +e) 5.313E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.652E+01 N/C
- -b) 2.917E+01 N/C
- -c) 3.209E+01 N/C
- +d) 3.529E+01 N/C
- -e) 3.882E+01 N/C
Key: Q2
edit- -a) 1.473E-14 N
- -b) 1.620E-14 N
- -c) 1.782E-14 N
- -d) 1.960E-14 N
- +e) 2.156E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
- -a) 7.119E+09 N/C2
- -b) 7.831E+09 N/C2
- +c) 8.614E+09 N/C2
- -d) 9.476E+09 N/C2
- -e) 1.042E+10 N/C2
Key: R0
edit- -a) 2.036E-14 N
- -b) 2.240E-14 N
- +c) 2.464E-14 N
- -d) 2.710E-14 N
- -e) 2.981E-14 N
- -a) 4.766E+01 degrees
- -b) 5.243E+01 degrees
- -c) 5.767E+01 degrees
- +d) 6.343E+01 degrees
- -e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 1.399E+01 V/m2
- +b) 1.539E+01 V/m2
- -c) 1.693E+01 V/m2
- -d) 1.862E+01 V/m2
- -e) 2.049E+01 V/m2
- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.571E+01 N/C
- -b) 2.828E+01 N/C
- -c) 3.111E+01 N/C
- -d) 3.422E+01 N/C
- +e) 3.765E+01 N/C
Key: R1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 6.877E+00 V/m2
- -b) 7.565E+00 V/m2
- +c) 8.321E+00 V/m2
- -d) 9.153E+00 V/m2
- -e) 1.007E+01 V/m2
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
3) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.7 m. Evaluate at x=0.76 m if a=1.1 m, b=1.6 m. The total charge on the rod is 8 nC.
- -a) 5.267E+00 V/m2
- -b) 5.794E+00 V/m2
- -c) 6.374E+00 V/m2
- +d) 7.011E+00 V/m2
- -e) 7.712E+00 V/m2
- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
Key: R2
edit- +a) 8.336E+09 N/C2
- -b) 9.170E+09 N/C2
- -c) 1.009E+10 N/C2
- -d) 1.110E+10 N/C2
- -e) 1.220E+10 N/C2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
- -a) 1.172E-14 N
- +b) 1.290E-14 N
- -c) 1.419E-14 N
- -d) 1.561E-14 N
- -e) 1.717E-14 N
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
- -a) 4.743E+01 degrees
- -b) 5.217E+01 degrees
- -c) 5.739E+01 degrees
- -d) 6.313E+01 degrees
- +e) 6.944E+01 degrees
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
Key: S0
edit- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
- -a) 4.766E+01 degrees
- -b) 5.243E+01 degrees
- -c) 5.767E+01 degrees
- +d) 6.343E+01 degrees
- -e) 6.978E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
- +a) 4.788E+09 N/C2
- -b) 5.267E+09 N/C2
- -c) 5.793E+09 N/C2
- -d) 6.373E+09 N/C2
- -e) 7.010E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
Key: S1
edit- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
- -a) 4.357E+01 degrees
- -b) 4.793E+01 degrees
- -c) 5.272E+01 degrees
- +d) 5.799E+01 degrees
- -e) 6.379E+01 degrees
4) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 1.694E+02 N/C
- -b) 1.864E+02 N/C
- -c) 2.050E+02 N/C
- -d) 2.255E+02 N/C
- -e) 2.480E+02 N/C
- -a) 1.028E-14 N
- -b) 1.130E-14 N
- -c) 1.244E-14 N
- -d) 1.368E-14 N
- +e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.54 m if a=0.76 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 1.399E+01 V/m2
- +b) 1.539E+01 V/m2
- -c) 1.693E+01 V/m2
- -d) 1.862E+01 V/m2
- -e) 2.049E+01 V/m2
Key: S2
edit- -a) 5.014E-14 N
- -b) 5.515E-14 N
- -c) 6.067E-14 N
- -d) 6.674E-14 N
- +e) 7.341E-14 N
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 2.567E+01 V/m2
- -b) 2.824E+01 V/m2
- -c) 3.106E+01 V/m2
- -d) 3.417E+01 V/m2
- +e) 3.759E+01 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 8.471E+01 N/C
- -b) 9.318E+01 N/C
- -c) 1.025E+02 N/C
- -d) 1.127E+02 N/C
- -e) 1.240E+02 N/C
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
Key: T0
edit- -a) 2.248E-14 N
- -b) 2.473E-14 N
- +c) 2.721E-14 N
- -d) 2.993E-14 N
- -e) 3.292E-14 N
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 8.690E+00 V/m2
- -b) 9.559E+00 V/m2
- +c) 1.051E+01 V/m2
- -d) 1.157E+01 V/m2
- -e) 1.272E+01 V/m2
- -a) 1.353E+09 N/C2
- -b) 1.488E+09 N/C2
- +c) 1.637E+09 N/C2
- -d) 1.801E+09 N/C2
- -e) 1.981E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 5.134E-01 V/m2
- +b) 5.648E-01 V/m2
- -c) 6.212E-01 V/m2
- -d) 6.834E-01 V/m2
- -e) 7.517E-01 V/m2
6) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 1.694E+02 N/C
- -b) 1.864E+02 N/C
- -c) 2.050E+02 N/C
- -d) 2.255E+02 N/C
- -e) 2.480E+02 N/C
Key: T1
edit- -a) 3.672E+09 N/C2
- -b) 4.039E+09 N/C2
- -c) 4.443E+09 N/C2
- +d) 4.887E+09 N/C2
- -e) 5.376E+09 N/C2
2) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
- -a) 4.091E+01 degrees
- +b) 4.500E+01 degrees
- -c) 4.950E+01 degrees
- -d) 5.445E+01 degrees
- -e) 5.990E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.2 m. Evaluate at x=0.73 m if a=0.52 m, b=1.6 m. The total charge on the rod is 7 nC.
- -a) 9.655E+00 V/m2
- -b) 1.062E+01 V/m2
- -c) 1.168E+01 V/m2
- +d) 1.285E+01 V/m2
- -e) 1.414E+01 V/m2
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.722E-01 V/m2
- -b) 4.094E-01 V/m2
- -c) 4.504E-01 V/m2
- +d) 4.954E-01 V/m2
- -e) 5.450E-01 V/m2
Key: T2
edit1) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 7.000E+01 N/C
- -b) 7.701E+01 N/C
- +c) 8.471E+01 N/C
- -d) 9.318E+01 N/C
- -e) 1.025E+02 N/C
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.517E+00 V/m2
- -b) 8.269E+00 V/m2
- -c) 9.096E+00 V/m2
- -d) 1.001E+01 V/m2
- +e) 1.101E+01 V/m2
- -a) 7.415E+09 N/C2
- -b) 8.156E+09 N/C2
- -c) 8.972E+09 N/C2
- -d) 9.869E+09 N/C2
- +e) 1.086E+10 N/C2
- -a) 1.172E-14 N
- +b) 1.290E-14 N
- -c) 1.419E-14 N
- -d) 1.561E-14 N
- -e) 1.717E-14 N
- -a) 4.743E+01 degrees
- -b) 5.217E+01 degrees
- -c) 5.739E+01 degrees
- -d) 6.313E+01 degrees
- +e) 6.944E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.65 m if a=0.85 m, b=1.8 m. The total charge on the rod is 5 nC.
- -a) 3.959E+00 V/m2
- +b) 4.355E+00 V/m2
- -c) 4.790E+00 V/m2
- -d) 5.269E+00 V/m2
- -e) 5.796E+00 V/m2
Key: U0
edit- -a) 3.426E-15 N
- -b) 3.768E-15 N
- -c) 4.145E-15 N
- -d) 4.560E-15 N
- +e) 5.015E-15 N
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.83 m if a=0.82 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 8.690E+00 V/m2
- -b) 9.559E+00 V/m2
- +c) 1.051E+01 V/m2
- -d) 1.157E+01 V/m2
- -e) 1.272E+01 V/m2
- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 9.459E+00 V/m2
- +b) 1.040E+01 V/m2
- -c) 1.145E+01 V/m2
- -d) 1.259E+01 V/m2
- -e) 1.385E+01 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 7.701E+01 N/C
- +b) 8.471E+01 N/C
- -c) 9.318E+01 N/C
- -d) 1.025E+02 N/C
- -e) 1.127E+02 N/C
Key: U1
edit1) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.357E+01 N/C
- -b) 2.593E+01 N/C
- -c) 2.852E+01 N/C
- +d) 3.137E+01 N/C
- -e) 3.451E+01 N/C
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees
- -a) 1.308E-13 N
- -b) 1.439E-13 N
- -c) 1.583E-13 N
- +d) 1.741E-13 N
- -e) 1.915E-13 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.61 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 5.995E+00 V/m2
- -b) 6.595E+00 V/m2
- +c) 7.254E+00 V/m2
- -d) 7.980E+00 V/m2
- -e) 8.778E+00 V/m2
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.961E-01 V/m2
- -b) 5.457E-01 V/m2
- -c) 6.002E-01 V/m2
- -d) 6.603E-01 V/m2
- +e) 7.263E-01 V/m2
Key: U2
edit1) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.571E+01 N/C
- -b) 2.828E+01 N/C
- -c) 3.111E+01 N/C
- -d) 3.422E+01 N/C
- +e) 3.765E+01 N/C
- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.606E+00 V/m2
- -b) 1.767E+00 V/m2
- -c) 1.943E+00 V/m2
- -d) 2.138E+00 V/m2
- -e) 2.351E+00 V/m2
- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=1.0 m if a=1.0 m, b=1.8 m. The total charge on the rod is 6 nC.
- -a) 3.610E+00 V/m2
- +b) 3.971E+00 V/m2
- -c) 4.368E+00 V/m2
- -d) 4.804E+00 V/m2
- -e) 5.285E+00 V/m2
Key: V0
edit- -a) 3.876E-14 N
- -b) 4.263E-14 N
- -c) 4.690E-14 N
- +d) 5.159E-14 N
- -e) 5.675E-14 N
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
- +a) 5.402E+09 N/C2
- -b) 5.943E+09 N/C2
- -c) 6.537E+09 N/C2
- -d) 7.191E+09 N/C2
- -e) 7.910E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 5.647E+00 V/m2
- -b) 6.212E+00 V/m2
- -c) 6.833E+00 V/m2
- -d) 7.517E+00 V/m2
- -e) 8.268E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
Key: V1
edit- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
2)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.228E+00 V/m2
- -b) 3.551E+00 V/m2
- -c) 3.906E+00 V/m2
- -d) 4.297E+00 V/m2
- +e) 4.727E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.96 m if a=0.95 m, b=1.8 m. The total charge on the rod is 7 nC.
- -a) 3.385E+00 V/m2
- -b) 3.724E+00 V/m2
- -c) 4.096E+00 V/m2
- +d) 4.506E+00 V/m2
- -e) 4.957E+00 V/m2
4) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 4.492E+01 N/C
- +b) 4.941E+01 N/C
- -c) 5.435E+01 N/C
- -d) 5.979E+01 N/C
- -e) 6.577E+01 N/C
- -a) 3.629E+01 degrees
- -b) 3.992E+01 degrees
- -c) 4.391E+01 degrees
- -d) 4.830E+01 degrees
- +e) 5.313E+01 degrees
- -a) 5.243E-14 N
- +b) 5.768E-14 N
- -c) 6.344E-14 N
- -d) 6.979E-14 N
- -e) 7.677E-14 N
Key: V2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- -a) 5.465E+00 V/m2
- -b) 6.012E+00 V/m2
- -c) 6.613E+00 V/m2
- +d) 7.274E+00 V/m2
- -e) 8.002E+00 V/m2
- -a) 2.429E+09 N/C2
- +b) 2.672E+09 N/C2
- -c) 2.939E+09 N/C2
- -d) 3.233E+09 N/C2
- -e) 3.556E+09 N/C2
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
4) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
- -a) 1.028E-14 N
- -b) 1.130E-14 N
- -c) 1.244E-14 N
- -d) 1.368E-14 N
- +e) 1.505E-14 N
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- +a) 1.606E+00 V/m2
- -b) 1.767E+00 V/m2
- -c) 1.943E+00 V/m2
- -d) 2.138E+00 V/m2
- -e) 2.351E+00 V/m2
Key: W0
edit- -a) 5.014E-14 N
- -b) 5.515E-14 N
- -c) 6.067E-14 N
- -d) 6.674E-14 N
- +e) 7.341E-14 N
- -a) 4.743E+01 degrees
- -b) 5.217E+01 degrees
- -c) 5.739E+01 degrees
- -d) 6.313E+01 degrees
- +e) 6.944E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 6.311E+00 V/m2
- -b) 6.943E+00 V/m2
- +c) 7.637E+00 V/m2
- -d) 8.401E+00 V/m2
- -e) 9.241E+00 V/m2
- -a) 2.013E+09 N/C2
- -b) 2.214E+09 N/C2
- -c) 2.435E+09 N/C2
- -d) 2.679E+09 N/C2
- +e) 2.947E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
Key: W1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
2) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 4.492E+01 N/C
- +b) 4.941E+01 N/C
- -c) 5.435E+01 N/C
- -d) 5.979E+01 N/C
- -e) 6.577E+01 N/C
- -a) 9.958E-15 N
- -b) 1.095E-14 N
- -c) 1.205E-14 N
- -d) 1.325E-14 N
- +e) 1.458E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 6.311E+00 V/m2
- -b) 6.943E+00 V/m2
- +c) 7.637E+00 V/m2
- -d) 8.401E+00 V/m2
- -e) 9.241E+00 V/m2
- -a) 5.377E+01 degrees
- -b) 5.914E+01 degrees
- -c) 6.506E+01 degrees
- +d) 7.157E+01 degrees
- -e) 7.872E+01 degrees
- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
Key: W2
edit- -a) 3.339E+09 N/C2
- -b) 3.673E+09 N/C2
- -c) 4.041E+09 N/C2
- +d) 4.445E+09 N/C2
- -e) 4.889E+09 N/C2
2) A large thin isolated square plate has an area of 9 m2. It is uniformly charged with 6 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.571E+01 N/C
- -b) 2.828E+01 N/C
- -c) 3.111E+01 N/C
- -d) 3.422E+01 N/C
- +e) 3.765E+01 N/C
- -a) 5.243E+01 degrees
- -b) 5.767E+01 degrees
- +c) 6.343E+01 degrees
- -d) 6.978E+01 degrees
- -e) 7.676E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.933E+00 V/m2
- -b) 9.826E+00 V/m2
- +c) 1.081E+01 V/m2
- -d) 1.189E+01 V/m2
- -e) 1.308E+01 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
- -a) 2.036E-14 N
- -b) 2.240E-14 N
- +c) 2.464E-14 N
- -d) 2.710E-14 N
- -e) 2.981E-14 N
Key: X0
edit- -a) 9.750E-15 N
- -b) 1.072E-14 N
- -c) 1.180E-14 N
- -d) 1.298E-14 N
- +e) 1.427E-14 N
- -a) 5.272E+01 degrees
- +b) 5.799E+01 degrees
- -c) 6.379E+01 degrees
- -d) 7.017E+01 degrees
- -e) 7.719E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.61 m, b=1.7 m. The total charge on the rod is 8 nC.
- -a) 5.995E+00 V/m2
- -b) 6.595E+00 V/m2
- +c) 7.254E+00 V/m2
- -d) 7.980E+00 V/m2
- -e) 8.778E+00 V/m2
- -a) 5.581E+09 N/C2
- -b) 6.139E+09 N/C2
- +c) 6.753E+09 N/C2
- -d) 7.428E+09 N/C2
- -e) 8.171E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 6.877E+00 V/m2
- -b) 7.565E+00 V/m2
- +c) 8.321E+00 V/m2
- -d) 9.153E+00 V/m2
- -e) 1.007E+01 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 8 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 6.171E+01 N/C
- -b) 6.788E+01 N/C
- -c) 7.467E+01 N/C
- -d) 8.214E+01 N/C
- +e) 9.035E+01 N/C
Key: X1
edit1)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.820E-01 V/m2
- +b) 8.602E-01 V/m2
- -c) 9.462E-01 V/m2
- -d) 1.041E+00 V/m2
- -e) 1.145E+00 V/m2
- -a) 8.259E-15 N
- -b) 9.085E-15 N
- -c) 9.993E-15 N
- -d) 1.099E-14 N
- +e) 1.209E-14 N
- -a) 1.202E+09 N/C2
- -b) 1.322E+09 N/C2
- -c) 1.454E+09 N/C2
- -d) 1.599E+09 N/C2
- +e) 1.759E+09 N/C2
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.6 m. Evaluate at x=0.73 m if a=0.64 m, b=1.8 m. The total charge on the rod is 3 nC.
- -a) 2.955E+00 V/m2
- +b) 3.250E+00 V/m2
- -c) 3.575E+00 V/m2
- -d) 3.933E+00 V/m2
- -e) 4.326E+00 V/m2
6) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 8.471E+01 N/C
- -b) 9.318E+01 N/C
- -c) 1.025E+02 N/C
- -d) 1.127E+02 N/C
- -e) 1.240E+02 N/C
Key: X2
edit- +a) 5.352E+09 N/C2
- -b) 5.887E+09 N/C2
- -c) 6.476E+09 N/C2
- -d) 7.124E+09 N/C2
- -e) 7.836E+09 N/C2
- -a) 2.248E-14 N
- -b) 2.473E-14 N
- +c) 2.721E-14 N
- -d) 2.993E-14 N
- -e) 3.292E-14 N
- -a) 3.961E+01 degrees
- -b) 4.357E+01 degrees
- -c) 4.793E+01 degrees
- -d) 5.272E+01 degrees
- +e) 5.799E+01 degrees
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.517E+00 V/m2
- -b) 8.269E+00 V/m2
- -c) 9.096E+00 V/m2
- -d) 1.001E+01 V/m2
- +e) 1.101E+01 V/m2
5) A large thin isolated square plate has an area of 3 m2. It is uniformly charged with 9 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- +a) 1.694E+02 N/C
- -b) 1.864E+02 N/C
- -c) 2.050E+02 N/C
- -d) 2.255E+02 N/C
- -e) 2.480E+02 N/C
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.1 m if a=0.62 m, b=1.3 m. The total charge on the rod is 7 nC.
- -a) 6.311E+00 V/m2
- -b) 6.943E+00 V/m2
- +c) 7.637E+00 V/m2
- -d) 8.401E+00 V/m2
- -e) 9.241E+00 V/m2
Key: Y0
edit- -a) 8.613E-15 N
- -b) 9.474E-15 N
- -c) 1.042E-14 N
- +d) 1.146E-14 N
- -e) 1.261E-14 N
- -a) 5.569E+01 degrees
- -b) 6.125E+01 degrees
- +c) 6.738E+01 degrees
- -d) 7.412E+01 degrees
- -e) 8.153E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=0.79 m if a=0.75 m, b=2.1 m. The total charge on the rod is 6 nC.
- +a) 5.825E+00 V/m2
- -b) 6.407E+00 V/m2
- -c) 7.048E+00 V/m2
- -d) 7.753E+00 V/m2
- -e) 8.528E+00 V/m2
- -a) 4.142E+09 N/C2
- -b) 4.556E+09 N/C2
- +c) 5.012E+09 N/C2
- -d) 5.513E+09 N/C2
- -e) 6.064E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 3.228E+00 V/m2
- -b) 3.551E+00 V/m2
- -c) 3.906E+00 V/m2
- -d) 4.297E+00 V/m2
- +e) 4.727E+00 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 4.492E+01 N/C
- +b) 4.941E+01 N/C
- -c) 5.435E+01 N/C
- -d) 5.979E+01 N/C
- -e) 6.577E+01 N/C
Key: Y1
edit1) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 3 mm from the center of the plate's surface?
- -a) 4.492E+01 N/C
- +b) 4.941E+01 N/C
- -c) 5.435E+01 N/C
- -d) 5.979E+01 N/C
- -e) 6.577E+01 N/C
- +a) 5.402E+09 N/C2
- -b) 5.943E+09 N/C2
- -c) 6.537E+09 N/C2
- -d) 7.191E+09 N/C2
- -e) 7.910E+09 N/C2
- -a) 3.391E-14 N
- -b) 3.731E-14 N
- -c) 4.104E-14 N
- +d) 4.514E-14 N
- -e) 4.965E-14 N
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 8.924E-01 V/m2
- -b) 9.816E-01 V/m2
- +c) 1.080E+00 V/m2
- -d) 1.188E+00 V/m2
- -e) 1.307E+00 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.5 m. Evaluate at x=1.0 m if a=1.1 m, b=1.4 m. The total charge on the rod is 5 nC.
- +a) 4.602E+00 V/m2
- -b) 5.062E+00 V/m2
- -c) 5.568E+00 V/m2
- -d) 6.125E+00 V/m2
- -e) 6.738E+00 V/m2
- -a) 3.719E+01 degrees
- -b) 4.091E+01 degrees
- +c) 4.500E+01 degrees
- -d) 4.950E+01 degrees
- -e) 5.445E+01 degrees
Key: Y2
editis an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.8 m. Evaluate at x=0.5 m if a=0.67 m, b=2.4 m. The total charge on the rod is 9 nC.
- -a) 5.465E+00 V/m2
- -b) 6.012E+00 V/m2
- -c) 6.613E+00 V/m2
- +d) 7.274E+00 V/m2
- -e) 8.002E+00 V/m2
- -a) 2.429E+09 N/C2
- +b) 2.672E+09 N/C2
- -c) 2.939E+09 N/C2
- -d) 3.233E+09 N/C2
- -e) 3.556E+09 N/C2
- +a) 6.343E+01 degrees
- -b) 6.978E+01 degrees
- -c) 7.676E+01 degrees
- -d) 8.443E+01 degrees
- -e) 9.288E+01 degrees
- -a) 2.248E-14 N
- -b) 2.473E-14 N
- +c) 2.721E-14 N
- -d) 2.993E-14 N
- -e) 3.292E-14 N
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 7.820E-01 V/m2
- +b) 8.602E-01 V/m2
- -c) 9.462E-01 V/m2
- -d) 1.041E+00 V/m2
- -e) 1.145E+00 V/m2
6) A large thin isolated square plate has an area of 4 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 4.821E+01 N/C
- -b) 5.303E+01 N/C
- -c) 5.834E+01 N/C
- -d) 6.417E+01 N/C
- +e) 7.059E+01 N/C
Key: Z0
edit- -a) 3.426E-15 N
- -b) 3.768E-15 N
- -c) 4.145E-15 N
- -d) 4.560E-15 N
- +e) 5.015E-15 N
- -a) 3.629E+01 degrees
- -b) 3.992E+01 degrees
- -c) 4.391E+01 degrees
- -d) 4.830E+01 degrees
- +e) 5.313E+01 degrees
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.3 m. Evaluate at x=0.96 m if a=0.63 m, b=1.4 m. The total charge on the rod is 3 nC.
- -a) 3.719E+00 V/m2
- +b) 4.091E+00 V/m2
- -c) 4.500E+00 V/m2
- -d) 4.950E+00 V/m2
- -e) 5.445E+00 V/m2
- -a) 1.202E+09 N/C2
- -b) 1.322E+09 N/C2
- -c) 1.454E+09 N/C2
- -d) 1.599E+09 N/C2
- +e) 1.759E+09 N/C2
5)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 4.295E+00 V/m2
- +b) 4.724E+00 V/m2
- -c) 5.196E+00 V/m2
- -d) 5.716E+00 V/m2
- -e) 6.288E+00 V/m2
6) A large thin isolated square plate has an area of 8 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 2.652E+01 N/C
- -b) 2.917E+01 N/C
- -c) 3.209E+01 N/C
- +d) 3.529E+01 N/C
- -e) 3.882E+01 N/C
Key: Z1
edit- -a) 2.036E-14 N
- -b) 2.240E-14 N
- +c) 2.464E-14 N
- -d) 2.710E-14 N
- -e) 2.981E-14 N
- -a) 3.961E+01 degrees
- -b) 4.357E+01 degrees
- -c) 4.793E+01 degrees
- -d) 5.272E+01 degrees
- +e) 5.799E+01 degrees
- -a) 1.764E+09 N/C2
- -b) 1.941E+09 N/C2
- +c) 2.135E+09 N/C2
- -d) 2.348E+09 N/C2
- -e) 2.583E+09 N/C2
4)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 5.134E-01 V/m2
- +b) 5.648E-01 V/m2
- -c) 6.212E-01 V/m2
- -d) 6.834E-01 V/m2
- -e) 7.517E-01 V/m2
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
6) A large thin isolated square plate has an area of 5 m2. It is uniformly charged with 7 nC of charge. What is the magnitude of the electric field 1 mm from the center of the plate's surface?
- -a) 6.534E+01 N/C
- -b) 7.187E+01 N/C
- +c) 7.906E+01 N/C
- -d) 8.696E+01 N/C
- -e) 9.566E+01 N/C
Key: Z2
edit- -a) 1.028E-14 N
- -b) 1.130E-14 N
- -c) 1.244E-14 N
- -d) 1.368E-14 N
- +e) 1.505E-14 N
is an integral that calculates the z-component of the electric field at point P situated above the x-axis where a charged rod of length (a+b) is located. The distance between point P and the x-axis is z=1.9 m. Evaluate at x=0.54 m if a=1.0 m, b=2.0 m. The total charge on the rod is 3 nC.
- -a) 1.665E+00 V/m2
- -b) 1.831E+00 V/m2
- -c) 2.014E+00 V/m2
- +d) 2.216E+00 V/m2
- -e) 2.437E+00 V/m2
- +a) 3.159E+09 N/C2
- -b) 3.475E+09 N/C2
- -c) 3.823E+09 N/C2
- -d) 4.205E+09 N/C2
- -e) 4.626E+09 N/C2
- -a) 5.377E+01 degrees
- -b) 5.914E+01 degrees
- -c) 6.506E+01 degrees
- +d) 7.157E+01 degrees
- -e) 7.872E+01 degrees
5) A large thin isolated square plate has an area of 6 m2. It is uniformly charged with 5 nC of charge. What is the magnitude of the electric field 2 mm from the center of the plate's surface?
- -a) 3.214E+01 N/C
- -b) 3.536E+01 N/C
- -c) 3.889E+01 N/C
- -d) 4.278E+01 N/C
- +e) 4.706E+01 N/C
6)
is an integral that calculates the magnitude of the electric field at a distance fromthe center of a thin circular disk as measured along a line normal to the plane of the disk. The disk's radius is and the surface charge density is . Evaluate at .
- -a) 9.459E+00 V/m2
- +b) 1.040E+01 V/m2
- -c) 1.145E+01 V/m2
- -d) 1.259E+01 V/m2
- -e) 1.385E+01 V/m2