78 Tests = 3 versions x 26 variations: Each of the 26 variations (A, B, ...) represents a different random selection of questions taken from the study guide.The 3 versions (0,1,..) all have the same questions but in different order and with different numerical inputs. Unless all students take version "0" it is best to reserve it for the instructor because the questions are grouped according to the order in which they appear on the study guide.
1) Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.754E+00 V
b) 9.630E+00 V
c) 1.059E+01 V
d) 1.165E+01 V
e) 1.282E+01 V
2) In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.713E+01 W
b) 1.885E+01 W
c) 2.073E+01 W
d) 2.280E+01 W
e) 2.508E+01 W
3) The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
a) 1.721E-01 A
b) 1.893E-01 A
c) 2.082E-01 A
d) 2.291E-01 A
e) 2.520E-01 A
4) Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.299E+00 mA
b) 1.429E+00 mA
c) 1.572E+00 mA
d) 1.729E+00 mA
e) 1.902E+00 mA
2) The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
a) 1.137E-01 A
b) 1.251E-01 A
c) 1.376E-01 A
d) 1.514E-01 A
e) 1.665E-01 A
3) In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
a) 1.418E+01 W
b) 1.560E+01 W
c) 1.716E+01 W
d) 1.887E+01 W
e) 2.076E+01 W
4) Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
2) Two sources of emf ε1=40.7 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=3.5 kΩ and R2=1.94 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.42 mA and I4=0.932 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.440E+01 V
b) 1.584E+01 V
c) 1.742E+01 V
d) 1.916E+01 V
e) 2.108E+01 V
3) Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.660E+00 mA
b) 1.826E+00 mA
c) 2.009E+00 mA
d) 2.209E+00 mA
e) 2.430E+00 mA
4) In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
2) In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 2.470E+01 W
b) 2.717E+01 W
c) 2.989E+01 W
d) 3.288E+01 W
e) 3.617E+01 W
3) Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.309E+01 V
b) 1.440E+01 V
c) 1.584E+01 V
d) 1.742E+01 V
e) 1.917E+01 V
4) A given battery has a 12 V emf and an internal resistance of 0.107 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
a) 1.721E-01 A
b) 1.893E-01 A
c) 2.082E-01 A
d) 2.291E-01 A
e) 2.520E-01 A
2) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W
3) Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.334E+00 V
b) 9.167E+00 V
c) 1.008E+01 V
d) 1.109E+01 V
e) 1.220E+01 V
4) In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
2) In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 7.827E+00 W
b) 8.610E+00 W
c) 9.470E+00 W
d) 1.042E+01 W
e) 1.146E+01 W
3) A given battery has a 15 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.645 Ω resistor what is the power dissipated by that load?
a) 1.898E+02 W
b) 2.087E+02 W
c) 2.296E+02 W
d) 2.526E+02 W
e) 2.778E+02 W
4) Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.898E+01 W
b) 3.188E+01 W
c) 3.507E+01 W
d) 3.858E+01 W
e) 4.243E+01 W
2) Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 7.886E+00 V
b) 8.675E+00 V
c) 9.542E+00 V
d) 1.050E+01 V
e) 1.155E+01 V
3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
a) 1.234E+00 V
b) 1.358E+00 V
c) 1.493E+00 V
d) 1.643E+00 V
e) 1.807E+00 V
4) Two sources of emf ε1=13.6 V, and ε2=6.53 V are oriented as shownin the circuit. The resistances are R1=2.89 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.11 mA and I4=0.311 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 5.184E+01 W
b) 5.702E+01 W
c) 6.272E+01 W
d) 6.900E+01 W
e) 7.590E+01 W
3) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V
4) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?
1) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
2) Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 7.886E+00 V
b) 8.675E+00 V
c) 9.542E+00 V
d) 1.050E+01 V
e) 1.155E+01 V
3) Three resistors, R1 = 0.548 Ω, and R2 = R2 = 1.24 Ω, are connected in parallel to a 7.16 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 7.029E+01 W
b) 7.731E+01 W
c) 8.505E+01 W
d) 9.355E+01 W
e) 1.029E+02 W
4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?
1) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A
2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
3) Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 3.890E+00 V
b) 4.279E+00 V
c) 4.707E+00 V
d) 5.178E+00 V
e) 5.695E+00 V
4) A given battery has a 15 V emf and an internal resistance of 0.177 Ω. If it is connected to a 0.824 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
2) Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.275E+00 V
b) 4.703E+00 V
c) 5.173E+00 V
d) 5.691E+00 V
e) 6.260E+00 V
3) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?
a) 1.455E+02 W
b) 1.601E+02 W
c) 1.761E+02 W
d) 1.937E+02 W
e) 2.131E+02 W
4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
1) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
2) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
3) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V
4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?
1) In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 2.470E+01 W
b) 2.717E+01 W
c) 2.989E+01 W
d) 3.288E+01 W
e) 3.617E+01 W
2) Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.056E+01 V
b) 1.161E+01 V
c) 1.277E+01 V
d) 1.405E+01 V
e) 1.545E+01 V
3) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?
a) 1.656E+02 W
b) 1.821E+02 W
c) 2.003E+02 W
d) 2.204E+02 W
e) 2.424E+02 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
1) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?
a) 1.455E+02 W
b) 1.601E+02 W
c) 1.761E+02 W
d) 1.937E+02 W
e) 2.131E+02 W
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s
3) In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
a) 2.172E+01 W
b) 2.389E+01 W
c) 2.628E+01 W
d) 2.891E+01 W
e) 3.180E+01 W
4) Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?
a) 1.814E+02 W
b) 1.996E+02 W
c) 2.195E+02 W
d) 2.415E+02 W
e) 2.656E+02 W
2) Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.380E+01 V
b) 1.518E+01 V
c) 1.670E+01 V
d) 1.837E+01 V
e) 2.020E+01 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 598 V. If the combined external and internal resistance is 170 &Omega and the capacitance is 73 mF, how long will it take for the capacitor's voltage to reach 436.0 V?
a) 1.218E+01 s
b) 1.339E+01 s
c) 1.473E+01 s
d) 1.621E+01 s
e) 1.783E+01 s
4) In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
1) Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.955E+00 mA
b) 2.150E+00 mA
c) 2.365E+00 mA
d) 2.601E+00 mA
e) 2.862E+00 mA
2) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?
1) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A
2) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA
3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
a) 1.234E+00 V
b) 1.358E+00 V
c) 1.493E+00 V
d) 1.643E+00 V
e) 1.807E+00 V
4) In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
2) Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 3.055E+00 mA
b) 3.360E+00 mA
c) 3.696E+00 mA
d) 4.066E+00 mA
e) 4.472E+00 mA
3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?
a) 1.202E+00 V
b) 1.323E+00 V
c) 1.455E+00 V
d) 1.600E+00 V
e) 1.761E+00 V
4) In the circuit shown V=17.9 V, R1=1.68 Ω, R2=7.84 Ω, and R3=12.3 Ω. What is the power dissipated by R2?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
a) 3.728E+00 s
b) 4.101E+00 s
c) 4.511E+00 s
d) 4.962E+00 s
e) 5.458E+00 s
2) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
3) The resistances in the figure shown are R1= 2.49 Ω, R2= 1.72 Ω, and R2= 3.58 Ω. V1 and V3 are text 0.417 V and 1.83 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.53 V. What is the absolute value of the current through R1?
a) 8.220E-02 A
b) 9.042E-02 A
c) 9.946E-02 A
d) 1.094E-01 A
e) 1.203E-01 A
4) A given battery has a 10 V emf and an internal resistance of 0.119 Ω. If it is connected to a 0.445 Ω resistor what is the power dissipated by that load?
1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W
2) Two sources of emf ε1=30.6 V, and ε2=12.0 V are oriented as shownin the circuit. The resistances are R1=3.46 kΩ and R2=2.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.97 mA and I4=0.643 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.986E+00 V
b) 5.484E+00 V
c) 6.033E+00 V
d) 6.636E+00 V
e) 7.299E+00 V
3) The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
a) 8.147E-02 A
b) 8.962E-02 A
c) 9.858E-02 A
d) 1.084E-01 A
e) 1.193E-01 A
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
1) The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
a) 1.770E-01 A
b) 1.947E-01 A
c) 2.141E-01 A
d) 2.355E-01 A
e) 2.591E-01 A
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s
3) Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.275E+00 V
b) 4.703E+00 V
c) 5.173E+00 V
d) 5.691E+00 V
e) 6.260E+00 V
4) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
a) 1.464E-01 A
b) 1.610E-01 A
c) 1.772E-01 A
d) 1.949E-01 A
e) 2.144E-01 A
2) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.293E+01 W
b) 2.522E+01 W
c) 2.774E+01 W
d) 3.052E+01 W
e) 3.357E+01 W
3) Two sources of emf ε1=38.9 V, and ε2=16.9 V are oriented as shownin the circuit. The resistances are R1=3.3 kΩ and R2=2.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.34 mA and I4=0.955 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 7.031E+00 V
b) 7.734E+00 V
c) 8.507E+00 V
d) 9.358E+00 V
e) 1.029E+01 V
4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?
1) The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
a) 1.834E-01 A
b) 2.018E-01 A
c) 2.220E-01 A
d) 2.441E-01 A
e) 2.686E-01 A
2) Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.013E+01 V
b) 1.115E+01 V
c) 1.226E+01 V
d) 1.349E+01 V
e) 1.484E+01 V
3) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.293E+01 W
b) 2.522E+01 W
c) 2.774E+01 W
d) 3.052E+01 W
e) 3.357E+01 W
4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?
1) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
2) The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
a) 9.287E-02 A
b) 1.022E-01 A
c) 1.124E-01 A
d) 1.236E-01 A
e) 1.360E-01 A
3) Three resistors, R1 = 1.41 Ω, and R2 = R2 = 3.17 Ω, are connected in parallel to a 5.89 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.681E+01 W
b) 1.849E+01 W
c) 2.033E+01 W
d) 2.237E+01 W
e) 2.460E+01 W
4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?
1) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s
3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
4) Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V
2) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
a) 1.333E+00 V
b) 1.466E+00 V
c) 1.612E+00 V
d) 1.774E+00 V
e) 1.951E+00 V
3) Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.981E+01 V
b) 2.179E+01 V
c) 2.397E+01 V
d) 2.637E+01 V
e) 2.901E+01 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
1) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V
2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s
4) Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
a) 8.147E-02 A
b) 8.962E-02 A
c) 9.858E-02 A
d) 1.084E-01 A
e) 1.193E-01 A
2) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 7.386E+01 W
b) 8.125E+01 W
c) 8.937E+01 W
d) 9.831E+01 W
e) 1.081E+02 W
3) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?
a) 1.370E+00 V
b) 1.507E+00 V
c) 1.658E+00 V
d) 1.824E+00 V
e) 2.006E+00 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
1) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 6.977E+01 W
b) 7.674E+01 W
c) 8.442E+01 W
d) 9.286E+01 W
e) 1.021E+02 W
2) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A
3) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
a) 2.843E+00 V
b) 3.127E+00 V
c) 3.440E+00 V
d) 3.784E+00 V
e) 4.162E+00 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
1) The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
a) 1.701E-01 A
b) 1.871E-01 A
c) 2.058E-01 A
d) 2.264E-01 A
e) 2.490E-01 A
2) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 4.890E+01 W
b) 5.379E+01 W
c) 5.917E+01 W
d) 6.508E+01 W
e) 7.159E+01 W
3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?
a) 1.202E+00 V
b) 1.323E+00 V
c) 1.455E+00 V
d) 1.600E+00 V
e) 1.761E+00 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
1) In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
a) 7.827E+00 W
b) 8.610E+00 W
c) 9.470E+00 W
d) 1.042E+01 W
e) 1.146E+01 W
2) Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 5.418E+00 V
b) 5.960E+00 V
c) 6.556E+00 V
d) 7.212E+00 V
e) 7.933E+00 V
3) The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
a) 1.834E-01 A
b) 2.018E-01 A
c) 2.220E-01 A
d) 2.441E-01 A
e) 2.686E-01 A
4) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V
2) In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
a) 1.418E+01 W
b) 1.560E+01 W
c) 1.716E+01 W
d) 1.887E+01 W
e) 2.076E+01 W
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
4) Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A
2) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W
3) Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 3.890E+00 V
b) 4.279E+00 V
c) 4.707E+00 V
d) 5.178E+00 V
e) 5.695E+00 V
4) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
a) 8.147E-02 A
b) 8.962E-02 A
c) 9.858E-02 A
d) 1.084E-01 A
e) 1.193E-01 A
2) In the circuit shown V=15.4 V, R1=2.55 Ω, R2=5.12 Ω, and R3=12.7 Ω. What is the power dissipated by R2?
a) 1.096E+01 W
b) 1.206E+01 W
c) 1.326E+01 W
d) 1.459E+01 W
e) 1.605E+01 W
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s
4) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?
1) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A
2) A battery with a terminal voltage of 8.41 V is connected to a circuit consisting of 3 16.1 Ω resistors and one 10.9 Ω resistor. What is the voltage drop across the 10.9 Ω resistor?
a) 1.058E+00 V
b) 1.163E+00 V
c) 1.280E+00 V
d) 1.408E+00 V
e) 1.548E+00 V
3) In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
a) 2.730E+01 W
b) 3.003E+01 W
c) 3.304E+01 W
d) 3.634E+01 W
e) 3.998E+01 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
1) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 467 V. If the combined external and internal resistance is 172 &Omega and the capacitance is 74 mF, how long will it take for the capacitor's voltage to reach 258.0 V?
a) 7.688E+00 s
b) 8.457E+00 s
c) 9.303E+00 s
d) 1.023E+01 s
e) 1.126E+01 s
3) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
a) 1.298E+00 V
b) 1.428E+00 V
c) 1.571E+00 V
d) 1.728E+00 V
e) 1.901E+00 V
4) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
1) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?
a) 1.552E+00 V
b) 1.707E+00 V
c) 1.878E+00 V
d) 2.066E+00 V
e) 2.272E+00 V
2) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
3) In the circuit shown V=17.5 V, R1=2.34 Ω, R2=7.1 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.784E+01 W
b) 1.963E+01 W
c) 2.159E+01 W
d) 2.375E+01 W
e) 2.612E+01 W
4) Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 2.54 Ω, R2= 1.15 Ω, and R2= 2.9 Ω. V1 and V3 are text 0.446 V and 3.39 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.285E-01 A
b) 1.414E-01 A
c) 1.555E-01 A
d) 1.711E-01 A
e) 1.882E-01 A
2) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
a) 2.352E+00 V
b) 2.587E+00 V
c) 2.846E+00 V
d) 3.131E+00 V
e) 3.444E+00 V
3) Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.754E+00 V
b) 9.630E+00 V
c) 1.059E+01 V
d) 1.165E+01 V
e) 1.282E+01 V
4) In the circuit shown V=11.9 V, R1=2.75 Ω, R2=7.19 Ω, and R3=14.6 Ω. What is the power dissipated by R2?
1) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
a) 2.352E+00 V
b) 2.587E+00 V
c) 2.846E+00 V
d) 3.131E+00 V
e) 3.444E+00 V
2) Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.334E+00 V
b) 9.167E+00 V
c) 1.008E+01 V
d) 1.109E+01 V
e) 1.220E+01 V
3) The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
a) 9.287E-02 A
b) 1.022E-01 A
c) 1.124E-01 A
d) 1.236E-01 A
e) 1.360E-01 A
4) In the circuit shown V=18.8 V, R1=2.59 Ω, R2=5.47 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A
2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?
a) 2.074E+00 V
b) 2.282E+00 V
c) 2.510E+00 V
d) 2.761E+00 V
e) 3.037E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s
4) Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
a) 2.177E+01 s
b) 2.394E+01 s
c) 2.634E+01 s
d) 2.897E+01 s
e) 3.187E+01 s
2) Two sources of emf ε1=43.7 V, and ε2=13.1 V are oriented as shownin the circuit. The resistances are R1=5.21 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.86 mA and I4=0.9 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.691E+00 mA
b) 2.960E+00 mA
c) 3.256E+00 mA
d) 3.582E+00 mA
e) 3.940E+00 mA
3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?
a) 1.709E+00 V
b) 1.880E+00 V
c) 2.068E+00 V
d) 2.275E+00 V
e) 2.503E+00 V
4) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
1) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?
a) 1.202E+00 V
b) 1.323E+00 V
c) 1.455E+00 V
d) 1.600E+00 V
e) 1.761E+00 V
2) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
a) 1.296E+01 s
b) 1.425E+01 s
c) 1.568E+01 s
d) 1.725E+01 s
e) 1.897E+01 s
4) Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.825E+00 V
b) 9.708E+00 V
c) 1.068E+01 V
d) 1.175E+01 V
e) 1.292E+01 V
2) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.836E+01 W
b) 3.120E+01 W
c) 3.432E+01 W
d) 3.775E+01 W
e) 4.152E+01 W
3) Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 6.970E+00 mA
b) 7.667E+00 mA
c) 8.434E+00 mA
d) 9.277E+00 mA
e) 1.020E+01 mA
4) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
1) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
2) Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 8.825E+00 V
b) 9.708E+00 V
c) 1.068E+01 V
d) 1.175E+01 V
e) 1.292E+01 V
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
4) Three resistors, R1 = 0.855 Ω, and R2 = R2 = 1.91 Ω, are connected in parallel to a 6.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
2) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA
3) Two sources of emf ε1=17.3 V, and ε2=6.46 V are oriented as shownin the circuit. The resistances are R1=2.54 kΩ and R2=2.79 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.1 mA and I4=0.281 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 6.488E+00 V
b) 7.137E+00 V
c) 7.850E+00 V
d) 8.635E+00 V
e) 9.499E+00 V
4) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
1) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
2) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?
a) 1.814E+02 W
b) 1.996E+02 W
c) 2.195E+02 W
d) 2.415E+02 W
e) 2.656E+02 W
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
a) 9.024E+00 s
b) 9.927E+00 s
c) 1.092E+01 s
d) 1.201E+01 s
e) 1.321E+01 s
4) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
a) 2.177E+01 s
b) 2.394E+01 s
c) 2.634E+01 s
d) 2.897E+01 s
e) 3.187E+01 s
2) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
3) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?
a) 2.052E+02 W
b) 2.257E+02 W
c) 2.483E+02 W
d) 2.731E+02 W
e) 3.004E+02 W
4) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
a) 9.571E+00 s
b) 1.053E+01 s
c) 1.158E+01 s
d) 1.274E+01 s
e) 1.401E+01 s
2) The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
a) 1.137E-01 A
b) 1.251E-01 A
c) 1.376E-01 A
d) 1.514E-01 A
e) 1.665E-01 A
3) A given battery has a 13 V emf and an internal resistance of 0.106 Ω. If it is connected to a 0.752 Ω resistor what is the power dissipated by that load?
a) 1.569E+02 W
b) 1.726E+02 W
c) 1.899E+02 W
d) 2.089E+02 W
e) 2.298E+02 W
4) Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.581E+01 W
b) 2.839E+01 W
c) 3.122E+01 W
d) 3.435E+01 W
e) 3.778E+01 W
2) Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.981E+01 V
b) 2.179E+01 V
c) 2.397E+01 V
d) 2.637E+01 V
e) 2.901E+01 V
3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
a) 2.467E+00 V
b) 2.714E+00 V
c) 2.985E+00 V
d) 3.283E+00 V
e) 3.612E+00 V
4) Two sources of emf ε1=26.8 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.2 kΩ and R2=2.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.29 mA and I4=0.464 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Two sources of emf ε1=28.6 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=3.73 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.27 mA and I4=0.774 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 6.641E+00 V
b) 7.305E+00 V
c) 8.035E+00 V
d) 8.839E+00 V
e) 9.723E+00 V
2) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?
a) 3.637E+00 V
b) 4.001E+00 V
c) 4.401E+00 V
d) 4.841E+00 V
e) 5.325E+00 V
3) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V
4) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
a) 1.333E+00 V
b) 1.466E+00 V
c) 1.612E+00 V
d) 1.774E+00 V
e) 1.951E+00 V
2) Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 5.418E+00 V
b) 5.960E+00 V
c) 6.556E+00 V
d) 7.212E+00 V
e) 7.933E+00 V
3) Three resistors, R1 = 1.31 Ω, and R2 = R2 = 2.91 Ω, are connected in parallel to a 6.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.294E+01 W
b) 2.523E+01 W
c) 2.776E+01 W
d) 3.053E+01 W
e) 3.359E+01 W
4) Two sources of emf ε1=26.2 V, and ε2=8.29 V are oriented as shownin the circuit. The resistances are R1=3.43 kΩ and R2=1.16 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.09 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
a) 1.701E-01 A
b) 1.871E-01 A
c) 2.058E-01 A
d) 2.264E-01 A
e) 2.490E-01 A
2) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
3) Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.309E+01 V
b) 1.440E+01 V
c) 1.584E+01 V
d) 1.742E+01 V
e) 1.917E+01 V
4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
a) 1.203E-01 A
b) 1.324E-01 A
c) 1.456E-01 A
d) 1.602E-01 A
e) 1.762E-01 A
2) A given battery has a 13 V emf and an internal resistance of 0.161 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?
a) 1.087E+02 W
b) 1.196E+02 W
c) 1.316E+02 W
d) 1.447E+02 W
e) 1.592E+02 W
3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
4) Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 7.805E+00 V
b) 8.586E+00 V
c) 9.444E+00 V
d) 1.039E+01 V
e) 1.143E+01 V
2) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.754E+01 W
b) 1.929E+01 W
c) 2.122E+01 W
d) 2.335E+01 W
e) 2.568E+01 W
3) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
a) 1.401E-01 A
b) 1.542E-01 A
c) 1.696E-01 A
d) 1.865E-01 A
e) 2.052E-01 A
4) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?
1) Two sources of emf ε1=39.2 V, and ε2=12.6 V are oriented as shownin the circuit. The resistances are R1=3.86 kΩ and R2=1.89 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.05 mA and I4=0.701 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 8.687E+00 V
b) 9.555E+00 V
c) 1.051E+01 V
d) 1.156E+01 V
e) 1.272E+01 V
2) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.581E+01 W
b) 2.839E+01 W
c) 3.122E+01 W
d) 3.435E+01 W
e) 3.778E+01 W
3) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA
4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
1) Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.224E+00 mA
b) 2.446E+00 mA
c) 2.691E+00 mA
d) 2.960E+00 mA
e) 3.256E+00 mA
2) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
a) 1.234E+00 V
b) 1.358E+00 V
c) 1.493E+00 V
d) 1.643E+00 V
e) 1.807E+00 V
3) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V
4) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?
a) 1.677E+00 V
b) 1.844E+00 V
c) 2.029E+00 V
d) 2.231E+00 V
e) 2.455E+00 V
2) Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.660E+00 mA
b) 1.826E+00 mA
c) 2.009E+00 mA
d) 2.209E+00 mA
e) 2.430E+00 mA
3) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V
4) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
a) 1.446E+01 W
b) 1.591E+01 W
c) 1.750E+01 W
d) 1.925E+01 W
e) 2.117E+01 W
2) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?
a) 1.552E+00 V
b) 1.707E+00 V
c) 1.878E+00 V
d) 2.066E+00 V
e) 2.272E+00 V
3) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?
1) A given battery has a 13 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.686 Ω resistor what is the power dissipated by that load?
a) 1.501E+02 W
b) 1.651E+02 W
c) 1.816E+02 W
d) 1.998E+02 W
e) 2.197E+02 W
2) In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.713E+01 W
b) 1.885E+01 W
c) 2.073E+01 W
d) 2.280E+01 W
e) 2.508E+01 W
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?
1) In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
a) 2.730E+01 W
b) 3.003E+01 W
c) 3.304E+01 W
d) 3.634E+01 W
e) 3.998E+01 W
2) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A
3) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?
a) 3.637E+00 V
b) 4.001E+00 V
c) 4.401E+00 V
d) 4.841E+00 V
e) 5.325E+00 V
4) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
1) Two sources of emf ε1=14.3 V, and ε2=5.6 V are oriented as shownin the circuit. The resistances are R1=5.31 kΩ and R2=2.39 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.12 mA and I4=0.284 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 3.416E+00 V
b) 3.757E+00 V
c) 4.133E+00 V
d) 4.546E+00 V
e) 5.001E+00 V
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
a) 5.401E+00 s
b) 5.941E+00 s
c) 6.535E+00 s
d) 7.189E+00 s
e) 7.908E+00 s
3) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
4) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 4.890E+01 W
b) 5.379E+01 W
c) 5.917E+01 W
d) 6.508E+01 W
e) 7.159E+01 W
2) Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 4.342E+00 V
b) 4.776E+00 V
c) 5.254E+00 V
d) 5.779E+00 V
e) 6.357E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
a) 1.905E+01 s
b) 2.095E+01 s
c) 2.304E+01 s
d) 2.535E+01 s
e) 2.788E+01 s
4) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
1) Two sources of emf ε1=21.6 V, and ε2=8.59 V are oriented as shownin the circuit. The resistances are R1=4.97 kΩ and R2=1.69 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.2 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 6.064E+00 V
b) 6.670E+00 V
c) 7.337E+00 V
d) 8.071E+00 V
e) 8.878E+00 V
2) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 554 V. If the combined external and internal resistance is 228 &Omega and the capacitance is 93 mF, how long will it take for the capacitor's voltage to reach 450.0 V?
a) 3.224E+01 s
b) 3.547E+01 s
c) 3.902E+01 s
d) 4.292E+01 s
e) 4.721E+01 s
4) Three resistors, R1 = 0.624 Ω, and R2 = R2 = 1.37 Ω, are connected in parallel to a 7.46 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
a) 1.419E+02 W
b) 1.561E+02 W
c) 1.717E+02 W
d) 1.889E+02 W
e) 2.078E+02 W
2) In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 1.190E+01 W
b) 1.309E+01 W
c) 1.440E+01 W
d) 1.584E+01 W
e) 1.742E+01 W
3) The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
a) 1.770E-01 A
b) 1.947E-01 A
c) 2.141E-01 A
d) 2.355E-01 A
e) 2.591E-01 A
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
1) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?
a) 1.656E+02 W
b) 1.821E+02 W
c) 2.003E+02 W
d) 2.204E+02 W
e) 2.424E+02 W
2) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
a) 2.089E-01 A
b) 2.298E-01 A
c) 2.528E-01 A
d) 2.781E-01 A
e) 3.059E-01 A
3) In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
a) 1.446E+01 W
b) 1.591E+01 W
c) 1.750E+01 W
d) 1.925E+01 W
e) 2.117E+01 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 351 V. If the combined external and internal resistance is 148 &Omega and the capacitance is 60 mF, how long will it take for the capacitor's voltage to reach 227.0 V?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
a) 9.024E+00 s
b) 9.927E+00 s
c) 1.092E+01 s
d) 1.201E+01 s
e) 1.321E+01 s
2) In the circuit shown V=10.8 V, R1=1.26 Ω, R2=5.65 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
a) 8.240E+00 W
b) 9.064E+00 W
c) 9.970E+00 W
d) 1.097E+01 W
e) 1.206E+01 W
3) A given battery has a 13 V emf and an internal resistance of 0.159 Ω. If it is connected to a 0.617 Ω resistor what is the power dissipated by that load?
a) 1.301E+02 W
b) 1.431E+02 W
c) 1.574E+02 W
d) 1.732E+02 W
e) 1.905E+02 W
4) The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
1) Three resistors, R1 = 1.52 Ω, and R2 = R2 = 3.38 Ω, are connected in parallel to a 5.82 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.842E+01 W
b) 2.026E+01 W
c) 2.228E+01 W
d) 2.451E+01 W
e) 2.696E+01 W
2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
a) 2.843E+00 V
b) 3.127E+00 V
c) 3.440E+00 V
d) 3.784E+00 V
e) 4.162E+00 V
3) Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.299E+00 mA
b) 1.429E+00 mA
c) 1.572E+00 mA
d) 1.729E+00 mA
e) 1.902E+00 mA
4) The resistances in the figure shown are R1= 2.74 Ω, R2= 1.63 Ω, and R2= 2.75 Ω. V1 and V3 are text 0.485 V and 2.01 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.555 V. What is the absolute value of the current through R1?
1) A battery with a terminal voltage of 10.7 V is connected to a circuit consisting of 2 24.5 Ω resistors and one 15.2 Ω resistor. What is the voltage drop across the 15.2 Ω resistor?
a) 1.730E+00 V
b) 1.903E+00 V
c) 2.094E+00 V
d) 2.303E+00 V
e) 2.533E+00 V
2) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A
3) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 4.890E+01 W
b) 5.379E+01 W
c) 5.917E+01 W
d) 6.508E+01 W
e) 7.159E+01 W
4) Two sources of emf ε1=24.9 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.32 kΩ and R2=2.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.74 mA and I4=0.444 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 2.898E+01 W
b) 3.188E+01 W
c) 3.507E+01 W
d) 3.858E+01 W
e) 4.243E+01 W
2) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
a) 1.886E-01 A
b) 2.075E-01 A
c) 2.282E-01 A
d) 2.510E-01 A
e) 2.761E-01 A
3) Two sources of emf ε1=29.3 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=5.65 kΩ and R2=2.68 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.81 mA and I4=0.525 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.717E+00 mA
b) 1.888E+00 mA
c) 2.077E+00 mA
d) 2.285E+00 mA
e) 2.514E+00 mA
4) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
1) The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
a) 1.464E-01 A
b) 1.610E-01 A
c) 1.772E-01 A
d) 1.949E-01 A
e) 2.144E-01 A
2) Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 6.970E+00 mA
b) 7.667E+00 mA
c) 8.434E+00 mA
d) 9.277E+00 mA
e) 1.020E+01 mA
3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.173E+02 W
b) 1.290E+02 W
c) 1.419E+02 W
d) 1.561E+02 W
e) 1.717E+02 W
4) Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.754E+01 W
b) 1.929E+01 W
c) 2.122E+01 W
d) 2.335E+01 W
e) 2.568E+01 W
2) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.247E+00 mA
b) 2.472E+00 mA
c) 2.719E+00 mA
d) 2.991E+00 mA
e) 3.290E+00 mA
3) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
a) 1.213E-01 A
b) 1.334E-01 A
c) 1.468E-01 A
d) 1.614E-01 A
e) 1.776E-01 A
4) Two sources of emf ε1=27.1 V, and ε2=8.04 V are oriented as shownin the circuit. The resistances are R1=2.94 kΩ and R2=1.61 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.87 mA and I4=0.57 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 3.055E+00 mA
b) 3.360E+00 mA
c) 3.696E+00 mA
d) 4.066E+00 mA
e) 4.472E+00 mA
2) Three resistors, R1 = 1.23 Ω, and R2 = R2 = 2.73 Ω, are connected in parallel to a 5.41 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
a) 1.788E+01 W
b) 1.967E+01 W
c) 2.163E+01 W
d) 2.380E+01 W
e) 2.617E+01 W
3) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 4.108E+00 V
b) 4.519E+00 V
c) 4.970E+00 V
d) 5.468E+00 V
e) 6.014E+00 V
4) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 569 V. If the combined external and internal resistance is 137 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 419.0 V?
a) 1.043E+01 s
b) 1.147E+01 s
c) 1.262E+01 s
d) 1.388E+01 s
e) 1.527E+01 s
2) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
a) 7.123E+00 W
b) 7.835E+00 W
c) 8.618E+00 W
d) 9.480E+00 W
e) 1.043E+01 W
3) A battery with a terminal voltage of 8.01 V is connected to a circuit consisting of 3 22.1 Ω resistors and one 14.5 Ω resistor. What is the voltage drop across the 14.5 Ω resistor?
a) 9.818E-01 V
b) 1.080E+00 V
c) 1.188E+00 V
d) 1.307E+00 V
e) 1.437E+00 V
4) Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 1.955E+00 mA
b) 2.150E+00 mA
c) 2.365E+00 mA
d) 2.601E+00 mA
e) 2.862E+00 mA
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s
3) In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
a) 1.157E+01 W
b) 1.273E+01 W
c) 1.400E+01 W
d) 1.540E+01 W
e) 1.694E+01 W
4) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
1) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?
a) 2.074E+00 V
b) 2.282E+00 V
c) 2.510E+00 V
d) 2.761E+00 V
e) 3.037E+00 V
2) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
a) 2.150E+00 mA
b) 2.365E+00 mA
c) 2.602E+00 mA
d) 2.862E+00 mA
e) 3.148E+00 mA
3) In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
a) 1.713E+01 W
b) 1.885E+01 W
c) 2.073E+01 W
d) 2.280E+01 W
e) 2.508E+01 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
a) 9.718E+00 s
b) 1.069E+01 s
c) 1.176E+01 s
d) 1.293E+01 s
e) 1.423E+01 s
2) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
a) 1.552E-01 A
b) 1.707E-01 A
c) 1.878E-01 A
d) 2.065E-01 A
e) 2.272E-01 A
3) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.093E+01 V
b) 1.202E+01 V
c) 1.322E+01 V
d) 1.454E+01 V
e) 1.600E+01 V
4) Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
a) 9.571E+00 s
b) 1.053E+01 s
c) 1.158E+01 s
d) 1.274E+01 s
e) 1.401E+01 s
2) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
a) 1.427E-01 A
b) 1.569E-01 A
c) 1.726E-01 A
d) 1.899E-01 A
e) 2.089E-01 A
3) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 1.921E+01 V
b) 2.114E+01 V
c) 2.325E+01 V
d) 2.557E+01 V
e) 2.813E+01 V
4) Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
a) 1.779E+01 V
b) 1.957E+01 V
c) 2.153E+01 V
d) 2.368E+01 V
e) 2.605E+01 V
2) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
a) 5.267E+00 V
b) 5.794E+00 V
c) 6.373E+00 V
d) 7.011E+00 V
e) 7.712E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
a) 1.385E+01 s
b) 1.524E+01 s
c) 1.676E+01 s
d) 1.844E+01 s
e) 2.028E+01 s
4) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
1) Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.754E+00 V
-b) 9.630E+00 V
-c) 1.059E+01 V
-d) 1.165E+01 V
+e) 1.282E+01 V
2) In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
+a) 1.713E+01 W
-b) 1.885E+01 W
-c) 2.073E+01 W
-d) 2.280E+01 W
-e) 2.508E+01 W
3) The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
+a) 1.721E-01 A
-b) 1.893E-01 A
-c) 2.082E-01 A
-d) 2.291E-01 A
-e) 2.520E-01 A
4) Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.299E+00 mA
-b) 1.429E+00 mA
-c) 1.572E+00 mA
-d) 1.729E+00 mA
-e) 1.902E+00 mA
2) The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
-a) 1.137E-01 A
-b) 1.251E-01 A
-c) 1.376E-01 A
+d) 1.514E-01 A
-e) 1.665E-01 A
3) In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
+a) 1.418E+01 W
-b) 1.560E+01 W
-c) 1.716E+01 W
-d) 1.887E+01 W
-e) 2.076E+01 W
4) Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
2) Two sources of emf ε1=40.7 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=3.5 kΩ and R2=1.94 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.42 mA and I4=0.932 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.440E+01 V
-b) 1.584E+01 V
-c) 1.742E+01 V
-d) 1.916E+01 V
-e) 2.108E+01 V
3) Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.660E+00 mA
-b) 1.826E+00 mA
-c) 2.009E+00 mA
-d) 2.209E+00 mA
-e) 2.430E+00 mA
4) In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
2) In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 2.470E+01 W
+b) 2.717E+01 W
-c) 2.989E+01 W
-d) 3.288E+01 W
-e) 3.617E+01 W
3) Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.309E+01 V
-b) 1.440E+01 V
+c) 1.584E+01 V
-d) 1.742E+01 V
-e) 1.917E+01 V
4) A given battery has a 12 V emf and an internal resistance of 0.107 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 1.6 Ω, R2= 1.3 Ω, and R2= 2.22 Ω. V1 and V3 are text 0.55 V and 3.18 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.743 V. What is the absolute value of the current through R1?
+a) 1.721E-01 A
-b) 1.893E-01 A
-c) 2.082E-01 A
-d) 2.291E-01 A
-e) 2.520E-01 A
2) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W
3) Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.334E+00 V
-b) 9.167E+00 V
+c) 1.008E+01 V
-d) 1.109E+01 V
-e) 1.220E+01 V
4) In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
2) In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 7.827E+00 W
+b) 8.610E+00 W
-c) 9.470E+00 W
-d) 1.042E+01 W
-e) 1.146E+01 W
3) A given battery has a 15 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.645 Ω resistor what is the power dissipated by that load?
-a) 1.898E+02 W
-b) 2.087E+02 W
-c) 2.296E+02 W
+d) 2.526E+02 W
-e) 2.778E+02 W
4) Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.898E+01 W
-b) 3.188E+01 W
-c) 3.507E+01 W
-d) 3.858E+01 W
+e) 4.243E+01 W
2) Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 7.886E+00 V
-b) 8.675E+00 V
-c) 9.542E+00 V
-d) 1.050E+01 V
+e) 1.155E+01 V
3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
+a) 1.234E+00 V
-b) 1.358E+00 V
-c) 1.493E+00 V
-d) 1.643E+00 V
-e) 1.807E+00 V
4) Two sources of emf ε1=13.6 V, and ε2=6.53 V are oriented as shownin the circuit. The resistances are R1=2.89 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.11 mA and I4=0.311 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
2) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 5.184E+01 W
+b) 5.702E+01 W
-c) 6.272E+01 W
-d) 6.900E+01 W
-e) 7.590E+01 W
3) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V
4) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?
1) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
2) Two sources of emf ε1=49.8 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=2.78 kΩ and R2=2.63 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.51 mA and I4=0.969 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 7.886E+00 V
-b) 8.675E+00 V
-c) 9.542E+00 V
-d) 1.050E+01 V
+e) 1.155E+01 V
3) Three resistors, R1 = 0.548 Ω, and R2 = R2 = 1.24 Ω, are connected in parallel to a 7.16 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 7.029E+01 W
-b) 7.731E+01 W
-c) 8.505E+01 W
+d) 9.355E+01 W
-e) 1.029E+02 W
4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?
1) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A
2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
3) Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 3.890E+00 V
-b) 4.279E+00 V
-c) 4.707E+00 V
+d) 5.178E+00 V
-e) 5.695E+00 V
4) A given battery has a 15 V emf and an internal resistance of 0.177 Ω. If it is connected to a 0.824 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
2) Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.275E+00 V
-b) 4.703E+00 V
+c) 5.173E+00 V
-d) 5.691E+00 V
-e) 6.260E+00 V
3) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?
-a) 1.455E+02 W
-b) 1.601E+02 W
-c) 1.761E+02 W
+d) 1.937E+02 W
-e) 2.131E+02 W
4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
1) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
2) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
3) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V
4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?
1) In the circuit shown V=18.4 V, R1=1.64 Ω, R2=6.56 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 2.470E+01 W
+b) 2.717E+01 W
-c) 2.989E+01 W
-d) 3.288E+01 W
-e) 3.617E+01 W
2) Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.056E+01 V
-b) 1.161E+01 V
-c) 1.277E+01 V
+d) 1.405E+01 V
-e) 1.545E+01 V
3) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?
-a) 1.656E+02 W
-b) 1.821E+02 W
+c) 2.003E+02 W
-d) 2.204E+02 W
-e) 2.424E+02 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
1) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?
-a) 1.455E+02 W
-b) 1.601E+02 W
-c) 1.761E+02 W
+d) 1.937E+02 W
-e) 2.131E+02 W
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s
3) In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
-a) 2.172E+01 W
-b) 2.389E+01 W
-c) 2.628E+01 W
+d) 2.891E+01 W
-e) 3.180E+01 W
4) Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?
-a) 1.814E+02 W
-b) 1.996E+02 W
-c) 2.195E+02 W
+d) 2.415E+02 W
-e) 2.656E+02 W
2) Two sources of emf ε1=36.7 V, and ε2=13.6 V are oriented as shownin the circuit. The resistances are R1=2.86 kΩ and R2=2.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.02 mA and I4=0.854 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.380E+01 V
-b) 1.518E+01 V
-c) 1.670E+01 V
-d) 1.837E+01 V
-e) 2.020E+01 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 598 V. If the combined external and internal resistance is 170 &Omega and the capacitance is 73 mF, how long will it take for the capacitor's voltage to reach 436.0 V?
-a) 1.218E+01 s
-b) 1.339E+01 s
-c) 1.473E+01 s
+d) 1.621E+01 s
-e) 1.783E+01 s
4) In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
1) Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.955E+00 mA
+b) 2.150E+00 mA
-c) 2.365E+00 mA
-d) 2.601E+00 mA
-e) 2.862E+00 mA
2) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?
1) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A
2) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA
3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
+a) 1.234E+00 V
-b) 1.358E+00 V
-c) 1.493E+00 V
-d) 1.643E+00 V
-e) 1.807E+00 V
4) In the circuit shown V=16.1 V, R1=1.18 Ω, R2=5.28 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
2) Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 3.055E+00 mA
+b) 3.360E+00 mA
-c) 3.696E+00 mA
-d) 4.066E+00 mA
-e) 4.472E+00 mA
3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?
-a) 1.202E+00 V
+b) 1.323E+00 V
-c) 1.455E+00 V
-d) 1.600E+00 V
-e) 1.761E+00 V
4) In the circuit shown V=17.9 V, R1=1.68 Ω, R2=7.84 Ω, and R3=12.3 Ω. What is the power dissipated by R2?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
-a) 3.728E+00 s
-b) 4.101E+00 s
-c) 4.511E+00 s
+d) 4.962E+00 s
-e) 5.458E+00 s
2) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
3) The resistances in the figure shown are R1= 2.49 Ω, R2= 1.72 Ω, and R2= 3.58 Ω. V1 and V3 are text 0.417 V and 1.83 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.53 V. What is the absolute value of the current through R1?
-a) 8.220E-02 A
-b) 9.042E-02 A
-c) 9.946E-02 A
+d) 1.094E-01 A
-e) 1.203E-01 A
4) A given battery has a 10 V emf and an internal resistance of 0.119 Ω. If it is connected to a 0.445 Ω resistor what is the power dissipated by that load?
1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W
2) Two sources of emf ε1=30.6 V, and ε2=12.0 V are oriented as shownin the circuit. The resistances are R1=3.46 kΩ and R2=2.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.97 mA and I4=0.643 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.986E+00 V
-b) 5.484E+00 V
-c) 6.033E+00 V
-d) 6.636E+00 V
+e) 7.299E+00 V
3) The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
-a) 8.147E-02 A
-b) 8.962E-02 A
-c) 9.858E-02 A
+d) 1.084E-01 A
-e) 1.193E-01 A
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
1) The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
-a) 1.770E-01 A
-b) 1.947E-01 A
+c) 2.141E-01 A
-d) 2.355E-01 A
-e) 2.591E-01 A
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s
3) Two sources of emf ε1=26.2 V, and ε2=11.5 V are oriented as shownin the circuit. The resistances are R1=2.13 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.11 mA and I4=0.746 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.275E+00 V
-b) 4.703E+00 V
+c) 5.173E+00 V
-d) 5.691E+00 V
-e) 6.260E+00 V
4) A given battery has a 14 V emf and an internal resistance of 0.0842 Ω. If it is connected to a 0.835 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
-a) 1.464E-01 A
+b) 1.610E-01 A
-c) 1.772E-01 A
-d) 1.949E-01 A
-e) 2.144E-01 A
2) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.293E+01 W
-b) 2.522E+01 W
+c) 2.774E+01 W
-d) 3.052E+01 W
-e) 3.357E+01 W
3) Two sources of emf ε1=38.9 V, and ε2=16.9 V are oriented as shownin the circuit. The resistances are R1=3.3 kΩ and R2=2.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.34 mA and I4=0.955 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 7.031E+00 V
+b) 7.734E+00 V
-c) 8.507E+00 V
-d) 9.358E+00 V
-e) 1.029E+01 V
4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?
1) The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
-a) 1.834E-01 A
+b) 2.018E-01 A
-c) 2.220E-01 A
-d) 2.441E-01 A
-e) 2.686E-01 A
2) Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.013E+01 V
-b) 1.115E+01 V
-c) 1.226E+01 V
+d) 1.349E+01 V
-e) 1.484E+01 V
3) Three resistors, R1 = 1.39 Ω, and R2 = R2 = 3.06 Ω, are connected in parallel to a 6.21 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.293E+01 W
-b) 2.522E+01 W
+c) 2.774E+01 W
-d) 3.052E+01 W
-e) 3.357E+01 W
4) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?
1) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
2) The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
-a) 9.287E-02 A
-b) 1.022E-01 A
-c) 1.124E-01 A
+d) 1.236E-01 A
-e) 1.360E-01 A
3) Three resistors, R1 = 1.41 Ω, and R2 = R2 = 3.17 Ω, are connected in parallel to a 5.89 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 1.681E+01 W
-b) 1.849E+01 W
-c) 2.033E+01 W
-d) 2.237E+01 W
+e) 2.460E+01 W
4) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?
1) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s
3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
4) Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V
2) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
-a) 1.333E+00 V
-b) 1.466E+00 V
-c) 1.612E+00 V
-d) 1.774E+00 V
+e) 1.951E+00 V
3) Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.981E+01 V
+b) 2.179E+01 V
-c) 2.397E+01 V
-d) 2.637E+01 V
-e) 2.901E+01 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
1) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V
2) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s
4) Two sources of emf ε1=42.2 V, and ε2=17.8 V are oriented as shownin the circuit. The resistances are R1=4.2 kΩ and R2=2.83 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.5 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
-a) 8.147E-02 A
-b) 8.962E-02 A
-c) 9.858E-02 A
+d) 1.084E-01 A
-e) 1.193E-01 A
2) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 7.386E+01 W
+b) 8.125E+01 W
-c) 8.937E+01 W
-d) 9.831E+01 W
-e) 1.081E+02 W
3) A battery with a terminal voltage of 9.88 V is connected to a circuit consisting of 3 15.9 Ω resistors and one 10.8 Ω resistor. What is the voltage drop across the 10.8 Ω resistor?
-a) 1.370E+00 V
-b) 1.507E+00 V
-c) 1.658E+00 V
+d) 1.824E+00 V
-e) 2.006E+00 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
1) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 6.977E+01 W
-b) 7.674E+01 W
+c) 8.442E+01 W
-d) 9.286E+01 W
-e) 1.021E+02 W
2) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A
3) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
-a) 2.843E+00 V
-b) 3.127E+00 V
+c) 3.440E+00 V
-d) 3.784E+00 V
-e) 4.162E+00 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
1) The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
-a) 1.701E-01 A
+b) 1.871E-01 A
-c) 2.058E-01 A
-d) 2.264E-01 A
-e) 2.490E-01 A
2) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 4.890E+01 W
-b) 5.379E+01 W
+c) 5.917E+01 W
-d) 6.508E+01 W
-e) 7.159E+01 W
3) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?
-a) 1.202E+00 V
+b) 1.323E+00 V
-c) 1.455E+00 V
-d) 1.600E+00 V
-e) 1.761E+00 V
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 130 V. If the combined external and internal resistance is 109 &Omega and the capacitance is 59 mF, how long will it take for the capacitor's voltage to reach 69.9 V?
1) In the circuit shown V=10.9 V, R1=1.68 Ω, R2=7.52 Ω, and R3=12.8 Ω. What is the power dissipated by R2?
-a) 7.827E+00 W
+b) 8.610E+00 W
-c) 9.470E+00 W
-d) 1.042E+01 W
-e) 1.146E+01 W
2) Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 5.418E+00 V
-b) 5.960E+00 V
-c) 6.556E+00 V
-d) 7.212E+00 V
+e) 7.933E+00 V
3) The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
-a) 1.834E-01 A
+b) 2.018E-01 A
-c) 2.220E-01 A
-d) 2.441E-01 A
-e) 2.686E-01 A
4) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V
2) In the circuit shown V=16.2 V, R1=2.84 Ω, R2=7.06 Ω, and R3=13.1 Ω. What is the power dissipated by R2?
+a) 1.418E+01 W
-b) 1.560E+01 W
-c) 1.716E+01 W
-d) 1.887E+01 W
-e) 2.076E+01 W
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
4) Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A
2) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W
3) Two sources of emf ε1=16.8 V, and ε2=6.85 V are oriented as shownin the circuit. The resistances are R1=4.43 kΩ and R2=1.24 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.68 mA and I4=0.758 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 3.890E+00 V
-b) 4.279E+00 V
-c) 4.707E+00 V
+d) 5.178E+00 V
-e) 5.695E+00 V
4) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 2.38 Ω, R2= 1.87 Ω, and R2= 2.32 Ω. V1 and V3 are text 0.605 V and 3.8 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.67 V. What is the absolute value of the current through R1?
-a) 8.147E-02 A
-b) 8.962E-02 A
-c) 9.858E-02 A
+d) 1.084E-01 A
-e) 1.193E-01 A
2) In the circuit shown V=15.4 V, R1=2.55 Ω, R2=5.12 Ω, and R3=12.7 Ω. What is the power dissipated by R2?
-a) 1.096E+01 W
-b) 1.206E+01 W
-c) 1.326E+01 W
-d) 1.459E+01 W
+e) 1.605E+01 W
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s
4) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?
1) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A
2) A battery with a terminal voltage of 8.41 V is connected to a circuit consisting of 3 16.1 Ω resistors and one 10.9 Ω resistor. What is the voltage drop across the 10.9 Ω resistor?
-a) 1.058E+00 V
-b) 1.163E+00 V
-c) 1.280E+00 V
-d) 1.408E+00 V
+e) 1.548E+00 V
3) In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
-a) 2.730E+01 W
+b) 3.003E+01 W
-c) 3.304E+01 W
-d) 3.634E+01 W
-e) 3.998E+01 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
1) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 467 V. If the combined external and internal resistance is 172 &Omega and the capacitance is 74 mF, how long will it take for the capacitor's voltage to reach 258.0 V?
-a) 7.688E+00 s
-b) 8.457E+00 s
-c) 9.303E+00 s
+d) 1.023E+01 s
-e) 1.126E+01 s
3) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
-a) 1.298E+00 V
-b) 1.428E+00 V
-c) 1.571E+00 V
-d) 1.728E+00 V
+e) 1.901E+00 V
4) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
1) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?
-a) 1.552E+00 V
-b) 1.707E+00 V
+c) 1.878E+00 V
-d) 2.066E+00 V
-e) 2.272E+00 V
2) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
3) In the circuit shown V=17.5 V, R1=2.34 Ω, R2=7.1 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
-a) 1.784E+01 W
+b) 1.963E+01 W
-c) 2.159E+01 W
-d) 2.375E+01 W
-e) 2.612E+01 W
4) Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) The resistances in the figure shown are R1= 2.54 Ω, R2= 1.15 Ω, and R2= 2.9 Ω. V1 and V3 are text 0.446 V and 3.39 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
+a) 1.285E-01 A
-b) 1.414E-01 A
-c) 1.555E-01 A
-d) 1.711E-01 A
-e) 1.882E-01 A
2) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
-a) 2.352E+00 V
-b) 2.587E+00 V
-c) 2.846E+00 V
-d) 3.131E+00 V
+e) 3.444E+00 V
3) Two sources of emf ε1=40.9 V, and ε2=16.1 V are oriented as shownin the circuit. The resistances are R1=5.55 kΩ and R2=1.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.11 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.754E+00 V
-b) 9.630E+00 V
-c) 1.059E+01 V
-d) 1.165E+01 V
+e) 1.282E+01 V
4) In the circuit shown V=11.9 V, R1=2.75 Ω, R2=7.19 Ω, and R3=14.6 Ω. What is the power dissipated by R2?
1) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
-a) 2.352E+00 V
-b) 2.587E+00 V
-c) 2.846E+00 V
-d) 3.131E+00 V
+e) 3.444E+00 V
2) Two sources of emf ε1=27.9 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=2.82 kΩ and R2=2.25 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.1 mA and I4=0.676 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.334E+00 V
-b) 9.167E+00 V
+c) 1.008E+01 V
-d) 1.109E+01 V
-e) 1.220E+01 V
3) The resistances in the figure shown are R1= 2.67 Ω, R2= 1.78 Ω, and R2= 3.63 Ω. V1 and V3 are text 0.448 V and 2.29 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.656 V. What is the absolute value of the current through R1?
-a) 9.287E-02 A
-b) 1.022E-01 A
-c) 1.124E-01 A
+d) 1.236E-01 A
-e) 1.360E-01 A
4) In the circuit shown V=18.8 V, R1=2.59 Ω, R2=5.47 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
1) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A
2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?
-a) 2.074E+00 V
-b) 2.282E+00 V
+c) 2.510E+00 V
-d) 2.761E+00 V
-e) 3.037E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s
4) Two sources of emf ε1=43.0 V, and ε2=13.8 V are oriented as shownin the circuit. The resistances are R1=3.97 kΩ and R2=1.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=6.25 mA and I4=1.82 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
-a) 2.177E+01 s
+b) 2.394E+01 s
-c) 2.634E+01 s
-d) 2.897E+01 s
-e) 3.187E+01 s
2) Two sources of emf ε1=43.7 V, and ε2=13.1 V are oriented as shownin the circuit. The resistances are R1=5.21 kΩ and R2=1.72 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.86 mA and I4=0.9 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.691E+00 mA
+b) 2.960E+00 mA
-c) 3.256E+00 mA
-d) 3.582E+00 mA
-e) 3.940E+00 mA
3) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 2 15.9 Ω resistors and one 10.4 Ω resistor. What is the voltage drop across the 10.4 Ω resistor?
-a) 1.709E+00 V
+b) 1.880E+00 V
-c) 2.068E+00 V
-d) 2.275E+00 V
-e) 2.503E+00 V
4) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
1) A battery with a terminal voltage of 8.66 V is connected to a circuit consisting of 3 19.6 Ω resistors and one 10.6 Ω resistor. What is the voltage drop across the 10.6 Ω resistor?
-a) 1.202E+00 V
+b) 1.323E+00 V
-c) 1.455E+00 V
-d) 1.600E+00 V
-e) 1.761E+00 V
2) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
-a) 1.296E+01 s
-b) 1.425E+01 s
+c) 1.568E+01 s
-d) 1.725E+01 s
-e) 1.897E+01 s
4) Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.825E+00 V
-b) 9.708E+00 V
-c) 1.068E+01 V
-d) 1.175E+01 V
+e) 1.292E+01 V
2) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.836E+01 W
-b) 3.120E+01 W
-c) 3.432E+01 W
-d) 3.775E+01 W
+e) 4.152E+01 W
3) Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 6.970E+00 mA
-b) 7.667E+00 mA
-c) 8.434E+00 mA
-d) 9.277E+00 mA
-e) 1.020E+01 mA
4) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
1) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
2) Two sources of emf ε1=39.4 V, and ε2=12.2 V are oriented as shownin the circuit. The resistances are R1=3.84 kΩ and R2=2.01 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.71 mA and I4=0.669 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 8.825E+00 V
-b) 9.708E+00 V
-c) 1.068E+01 V
-d) 1.175E+01 V
+e) 1.292E+01 V
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
4) Three resistors, R1 = 0.855 Ω, and R2 = R2 = 1.91 Ω, are connected in parallel to a 6.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
2) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA
3) Two sources of emf ε1=17.3 V, and ε2=6.46 V are oriented as shownin the circuit. The resistances are R1=2.54 kΩ and R2=2.79 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.1 mA and I4=0.281 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 6.488E+00 V
+b) 7.137E+00 V
-c) 7.850E+00 V
-d) 8.635E+00 V
-e) 9.499E+00 V
4) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
1) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
2) A given battery has a 15 V emf and an internal resistance of 0.162 Ω. If it is connected to a 0.561 Ω resistor what is the power dissipated by that load?
-a) 1.814E+02 W
-b) 1.996E+02 W
-c) 2.195E+02 W
+d) 2.415E+02 W
-e) 2.656E+02 W
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
-a) 9.024E+00 s
-b) 9.927E+00 s
-c) 1.092E+01 s
+d) 1.201E+01 s
-e) 1.321E+01 s
4) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 129 V. If the combined external and internal resistance is 169 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 109.0 V?
-a) 2.177E+01 s
+b) 2.394E+01 s
-c) 2.634E+01 s
-d) 2.897E+01 s
-e) 3.187E+01 s
2) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
3) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?
+a) 2.052E+02 W
-b) 2.257E+02 W
-c) 2.483E+02 W
-d) 2.731E+02 W
-e) 3.004E+02 W
4) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
-a) 9.571E+00 s
-b) 1.053E+01 s
+c) 1.158E+01 s
-d) 1.274E+01 s
-e) 1.401E+01 s
2) The resistances in the figure shown are R1= 1.33 Ω, R2= 1.72 Ω, and R2= 3.69 Ω. V1 and V3 are text 0.606 V and 3.31 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.608 V. What is the absolute value of the current through R1?
-a) 1.137E-01 A
-b) 1.251E-01 A
-c) 1.376E-01 A
+d) 1.514E-01 A
-e) 1.665E-01 A
3) A given battery has a 13 V emf and an internal resistance of 0.106 Ω. If it is connected to a 0.752 Ω resistor what is the power dissipated by that load?
-a) 1.569E+02 W
+b) 1.726E+02 W
-c) 1.899E+02 W
-d) 2.089E+02 W
-e) 2.298E+02 W
4) Two sources of emf ε1=38.8 V, and ε2=14.9 V are oriented as shownin the circuit. The resistances are R1=5.83 kΩ and R2=1.77 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.57 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.581E+01 W
-b) 2.839E+01 W
-c) 3.122E+01 W
+d) 3.435E+01 W
-e) 3.778E+01 W
2) Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.981E+01 V
+b) 2.179E+01 V
-c) 2.397E+01 V
-d) 2.637E+01 V
-e) 2.901E+01 V
3) A battery with a terminal voltage of 10.6 V is connected to a circuit consisting of 2 21.1 Ω resistors and one 12.8 Ω resistor. What is the voltage drop across the 12.8 Ω resistor?
+a) 2.467E+00 V
-b) 2.714E+00 V
-c) 2.985E+00 V
-d) 3.283E+00 V
-e) 3.612E+00 V
4) Two sources of emf ε1=26.8 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.2 kΩ and R2=2.55 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.29 mA and I4=0.464 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Two sources of emf ε1=28.6 V, and ε2=11.1 V are oriented as shownin the circuit. The resistances are R1=3.73 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.27 mA and I4=0.774 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 6.641E+00 V
+b) 7.305E+00 V
-c) 8.035E+00 V
-d) 8.839E+00 V
-e) 9.723E+00 V
2) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?
+a) 3.637E+00 V
-b) 4.001E+00 V
-c) 4.401E+00 V
-d) 4.841E+00 V
-e) 5.325E+00 V
3) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V
4) Three resistors, R1 = 1.74 Ω, and R2 = R2 = 3.92 Ω, are connected in parallel to a 8.5 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) A battery with a terminal voltage of 12.4 V is connected to a circuit consisting of 3 21.6 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
-a) 1.333E+00 V
-b) 1.466E+00 V
-c) 1.612E+00 V
-d) 1.774E+00 V
+e) 1.951E+00 V
2) Two sources of emf ε1=24.4 V, and ε2=6.73 V are oriented as shownin the circuit. The resistances are R1=5.7 kΩ and R2=1.95 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.36 mA and I4=0.418 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 5.418E+00 V
-b) 5.960E+00 V
-c) 6.556E+00 V
-d) 7.212E+00 V
+e) 7.933E+00 V
3) Three resistors, R1 = 1.31 Ω, and R2 = R2 = 2.91 Ω, are connected in parallel to a 6.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.294E+01 W
-b) 2.523E+01 W
+c) 2.776E+01 W
-d) 3.053E+01 W
-e) 3.359E+01 W
4) Two sources of emf ε1=26.2 V, and ε2=8.29 V are oriented as shownin the circuit. The resistances are R1=3.43 kΩ and R2=1.16 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.09 mA and I4=1.06 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) The resistances in the figure shown are R1= 1.18 Ω, R2= 0.878 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.637 V and 3.51 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.547 V. What is the absolute value of the current through R1?
-a) 1.701E-01 A
+b) 1.871E-01 A
-c) 2.058E-01 A
-d) 2.264E-01 A
-e) 2.490E-01 A
2) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
3) Two sources of emf ε1=46.1 V, and ε2=16.2 V are oriented as shownin the circuit. The resistances are R1=5.17 kΩ and R2=2.06 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.97 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 1.309E+01 V
-b) 1.440E+01 V
+c) 1.584E+01 V
-d) 1.742E+01 V
-e) 1.917E+01 V
4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?
1) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?
-a) 1.203E-01 A
-b) 1.324E-01 A
+c) 1.456E-01 A
-d) 1.602E-01 A
-e) 1.762E-01 A
2) A given battery has a 13 V emf and an internal resistance of 0.161 Ω. If it is connected to a 0.814 Ω resistor what is the power dissipated by that load?
-a) 1.087E+02 W
-b) 1.196E+02 W
-c) 1.316E+02 W
+d) 1.447E+02 W
-e) 1.592E+02 W
3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
4) Two sources of emf ε1=58.5 V, and ε2=17.3 V are oriented as shownin the circuit. The resistances are R1=3.06 kΩ and R2=1.88 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.25 mA and I4=1.25 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 7.805E+00 V
-b) 8.586E+00 V
-c) 9.444E+00 V
-d) 1.039E+01 V
+e) 1.143E+01 V
2) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
+a) 1.754E+01 W
-b) 1.929E+01 W
-c) 2.122E+01 W
-d) 2.335E+01 W
-e) 2.568E+01 W
3) The resistances in the figure shown are R1= 2.04 Ω, R2= 1.19 Ω, and R2= 2.5 Ω. V1 and V3 are text 0.507 V and 3.07 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.602 V. What is the absolute value of the current through R1?
+a) 1.401E-01 A
-b) 1.542E-01 A
-c) 1.696E-01 A
-d) 1.865E-01 A
-e) 2.052E-01 A
4) A given battery has a 12 V emf and an internal resistance of 0.0984 Ω. If it is connected to a 0.485 Ω resistor what is the power dissipated by that load?
1) Two sources of emf ε1=39.2 V, and ε2=12.6 V are oriented as shownin the circuit. The resistances are R1=3.86 kΩ and R2=1.89 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.05 mA and I4=0.701 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 8.687E+00 V
-b) 9.555E+00 V
-c) 1.051E+01 V
-d) 1.156E+01 V
+e) 1.272E+01 V
2) Three resistors, R1 = 1.2 Ω, and R2 = R2 = 2.75 Ω, are connected in parallel to a 6.42 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.581E+01 W
-b) 2.839E+01 W
-c) 3.122E+01 W
+d) 3.435E+01 W
-e) 3.778E+01 W
3) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA
4) A battery with a terminal voltage of 14.9 V is connected to a circuit consisting of 2 16.3 Ω resistors and one 9.8 Ω resistor. What is the voltage drop across the 9.8 Ω resistor?
1) Two sources of emf ε1=36.3 V, and ε2=12.9 V are oriented as shownin the circuit. The resistances are R1=4.28 kΩ and R2=1.58 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.16 mA and I4=1.2 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.224E+00 mA
-b) 2.446E+00 mA
-c) 2.691E+00 mA
+d) 2.960E+00 mA
-e) 3.256E+00 mA
2) A battery with a terminal voltage of 7.63 V is connected to a circuit consisting of 3 20.9 Ω resistors and one 12.1 Ω resistor. What is the voltage drop across the 12.1 Ω resistor?
+a) 1.234E+00 V
-b) 1.358E+00 V
-c) 1.493E+00 V
-d) 1.643E+00 V
-e) 1.807E+00 V
3) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V
4) Three resistors, R1 = 0.87 Ω, and R2 = R2 = 2.0 Ω, are connected in parallel to a 8.57 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) A battery with a terminal voltage of 8.72 V is connected to a circuit consisting of 2 15.8 Ω resistors and one 9.58 Ω resistor. What is the voltage drop across the 9.58 Ω resistor?
-a) 1.677E+00 V
-b) 1.844E+00 V
+c) 2.029E+00 V
-d) 2.231E+00 V
-e) 2.455E+00 V
2) Two sources of emf ε1=24.8 V, and ε2=10.3 V are oriented as shownin the circuit. The resistances are R1=2.19 kΩ and R2=1.6 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.49 mA and I4=0.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.660E+00 mA
-b) 1.826E+00 mA
-c) 2.009E+00 mA
-d) 2.209E+00 mA
-e) 2.430E+00 mA
3) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V
4) Three resistors, R1 = 1.43 Ω, and R2 = R2 = 3.25 Ω, are connected in parallel to a 9.03 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
-a) 1.446E+01 W
-b) 1.591E+01 W
-c) 1.750E+01 W
-d) 1.925E+01 W
+e) 2.117E+01 W
2) A battery with a terminal voltage of 7.82 V is connected to a circuit consisting of 2 19.3 Ω resistors and one 12.2 Ω resistor. What is the voltage drop across the 12.2 Ω resistor?
-a) 1.552E+00 V
-b) 1.707E+00 V
+c) 1.878E+00 V
-d) 2.066E+00 V
-e) 2.272E+00 V
3) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
4) A given battery has a 14 V emf and an internal resistance of 0.192 Ω. If it is connected to a 0.766 Ω resistor what is the power dissipated by that load?
1) A given battery has a 13 V emf and an internal resistance of 0.113 Ω. If it is connected to a 0.686 Ω resistor what is the power dissipated by that load?
-a) 1.501E+02 W
-b) 1.651E+02 W
+c) 1.816E+02 W
-d) 1.998E+02 W
-e) 2.197E+02 W
2) In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
+a) 1.713E+01 W
-b) 1.885E+01 W
-c) 2.073E+01 W
-d) 2.280E+01 W
-e) 2.508E+01 W
3) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
4) A battery with a terminal voltage of 13.2 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.3 Ω resistor. What is the voltage drop across the 10.3 Ω resistor?
1) In the circuit shown V=19.6 V, R1=1.45 Ω, R2=7.85 Ω, and R3=15.8 Ω. What is the power dissipated by R2?
-a) 2.730E+01 W
+b) 3.003E+01 W
-c) 3.304E+01 W
-d) 3.634E+01 W
-e) 3.998E+01 W
2) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A
3) A battery with a terminal voltage of 14.6 V is connected to a circuit consisting of 2 21.7 Ω resistors and one 14.4 Ω resistor. What is the voltage drop across the 14.4 Ω resistor?
+a) 3.637E+00 V
-b) 4.001E+00 V
-c) 4.401E+00 V
-d) 4.841E+00 V
-e) 5.325E+00 V
4) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
1) Two sources of emf ε1=14.3 V, and ε2=5.6 V are oriented as shownin the circuit. The resistances are R1=5.31 kΩ and R2=2.39 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.12 mA and I4=0.284 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 3.416E+00 V
-b) 3.757E+00 V
-c) 4.133E+00 V
+d) 4.546E+00 V
-e) 5.001E+00 V
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 213 V. If the combined external and internal resistance is 118 &Omega and the capacitance is 61 mF, how long will it take for the capacitor's voltage to reach 142.0 V?
-a) 5.401E+00 s
-b) 5.941E+00 s
-c) 6.535E+00 s
-d) 7.189E+00 s
+e) 7.908E+00 s
3) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
4) Three resistors, R1 = 0.61 Ω, and R2 = R2 = 1.35 Ω, are connected in parallel to a 7.04 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 4.890E+01 W
-b) 5.379E+01 W
+c) 5.917E+01 W
-d) 6.508E+01 W
-e) 7.159E+01 W
2) Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 4.342E+00 V
-b) 4.776E+00 V
-c) 5.254E+00 V
+d) 5.779E+00 V
-e) 6.357E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
+a) 1.905E+01 s
-b) 2.095E+01 s
-c) 2.304E+01 s
-d) 2.535E+01 s
-e) 2.788E+01 s
4) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
1) Two sources of emf ε1=21.6 V, and ε2=8.59 V are oriented as shownin the circuit. The resistances are R1=4.97 kΩ and R2=1.69 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.2 mA and I4=0.749 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
-a) 6.064E+00 V
-b) 6.670E+00 V
+c) 7.337E+00 V
-d) 8.071E+00 V
-e) 8.878E+00 V
2) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 554 V. If the combined external and internal resistance is 228 &Omega and the capacitance is 93 mF, how long will it take for the capacitor's voltage to reach 450.0 V?
-a) 3.224E+01 s
+b) 3.547E+01 s
-c) 3.902E+01 s
-d) 4.292E+01 s
-e) 4.721E+01 s
4) Three resistors, R1 = 0.624 Ω, and R2 = R2 = 1.37 Ω, are connected in parallel to a 7.46 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
1) A given battery has a 11 V emf and an internal resistance of 0.0998 Ω. If it is connected to a 0.417 Ω resistor what is the power dissipated by that load?
-a) 1.419E+02 W
-b) 1.561E+02 W
-c) 1.717E+02 W
+d) 1.889E+02 W
-e) 2.078E+02 W
2) In the circuit shown V=15.4 V, R1=2.77 Ω, R2=6.07 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 1.190E+01 W
-b) 1.309E+01 W
+c) 1.440E+01 W
-d) 1.584E+01 W
-e) 1.742E+01 W
3) The resistances in the figure shown are R1= 1.54 Ω, R2= 0.927 Ω, and R2= 2.46 Ω. V1 and V3 are text 0.632 V and 2.12 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.586 V. What is the absolute value of the current through R1?
-a) 1.770E-01 A
-b) 1.947E-01 A
+c) 2.141E-01 A
-d) 2.355E-01 A
-e) 2.591E-01 A
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 301 V. If the combined external and internal resistance is 245 &Omega and the capacitance is 63 mF, how long will it take for the capacitor's voltage to reach 192.0 V?
1) A given battery has a 14 V emf and an internal resistance of 0.132 Ω. If it is connected to a 0.689 Ω resistor what is the power dissipated by that load?
-a) 1.656E+02 W
-b) 1.821E+02 W
+c) 2.003E+02 W
-d) 2.204E+02 W
-e) 2.424E+02 W
2) The resistances in the figure shown are R1= 2.42 Ω, R2= 1.09 Ω, and R2= 3.89 Ω. V1 and V3 are text 0.677 V and 1.86 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.745 V. What is the absolute value of the current through R1?
-a) 2.089E-01 A
-b) 2.298E-01 A
+c) 2.528E-01 A
-d) 2.781E-01 A
-e) 3.059E-01 A
3) In the circuit shown V=17.8 V, R1=2.27 Ω, R2=6.79 Ω, and R3=15.1 Ω. What is the power dissipated by R2?
-a) 1.446E+01 W
-b) 1.591E+01 W
-c) 1.750E+01 W
-d) 1.925E+01 W
+e) 2.117E+01 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 351 V. If the combined external and internal resistance is 148 &Omega and the capacitance is 60 mF, how long will it take for the capacitor's voltage to reach 227.0 V?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 543 V. If the combined external and internal resistance is 201 &Omega and the capacitance is 82 mF, how long will it take for the capacitor's voltage to reach 281.0 V?
-a) 9.024E+00 s
-b) 9.927E+00 s
-c) 1.092E+01 s
+d) 1.201E+01 s
-e) 1.321E+01 s
2) In the circuit shown V=10.8 V, R1=1.26 Ω, R2=5.65 Ω, and R3=14.8 Ω. What is the power dissipated by R2?
-a) 8.240E+00 W
-b) 9.064E+00 W
-c) 9.970E+00 W
-d) 1.097E+01 W
+e) 1.206E+01 W
3) A given battery has a 13 V emf and an internal resistance of 0.159 Ω. If it is connected to a 0.617 Ω resistor what is the power dissipated by that load?
-a) 1.301E+02 W
-b) 1.431E+02 W
-c) 1.574E+02 W
+d) 1.732E+02 W
-e) 1.905E+02 W
4) The resistances in the figure shown are R1= 2.24 Ω, R2= 1.03 Ω, and R2= 2.39 Ω. V1 and V3 are text 0.595 V and 2.58 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.707 V. What is the absolute value of the current through R1?
1) Three resistors, R1 = 1.52 Ω, and R2 = R2 = 3.38 Ω, are connected in parallel to a 5.82 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 1.842E+01 W
-b) 2.026E+01 W
+c) 2.228E+01 W
-d) 2.451E+01 W
-e) 2.696E+01 W
2) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
-a) 2.843E+00 V
-b) 3.127E+00 V
+c) 3.440E+00 V
-d) 3.784E+00 V
-e) 4.162E+00 V
3) Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 1.299E+00 mA
-b) 1.429E+00 mA
-c) 1.572E+00 mA
-d) 1.729E+00 mA
-e) 1.902E+00 mA
4) The resistances in the figure shown are R1= 2.74 Ω, R2= 1.63 Ω, and R2= 2.75 Ω. V1 and V3 are text 0.485 V and 2.01 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.555 V. What is the absolute value of the current through R1?
1) A battery with a terminal voltage of 10.7 V is connected to a circuit consisting of 2 24.5 Ω resistors and one 15.2 Ω resistor. What is the voltage drop across the 15.2 Ω resistor?
-a) 1.730E+00 V
-b) 1.903E+00 V
-c) 2.094E+00 V
-d) 2.303E+00 V
+e) 2.533E+00 V
2) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A
3) Three resistors, R1 = 1.25 Ω, and R2 = R2 = 2.82 Ω, are connected in parallel to a 8.6 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 4.890E+01 W
-b) 5.379E+01 W
+c) 5.917E+01 W
-d) 6.508E+01 W
-e) 7.159E+01 W
4) Two sources of emf ε1=24.9 V, and ε2=10.1 V are oriented as shownin the circuit. The resistances are R1=2.32 kΩ and R2=2.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.74 mA and I4=0.444 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Three resistors, R1 = 0.672 Ω, and R2 = R2 = 1.52 Ω, are connected in parallel to a 5.34 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 2.898E+01 W
-b) 3.188E+01 W
-c) 3.507E+01 W
-d) 3.858E+01 W
+e) 4.243E+01 W
2) The resistances in the figure shown are R1= 1.1 Ω, R2= 1.55 Ω, and R2= 2.11 Ω. V1 and V3 are text 0.545 V and 3.22 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.744 V. What is the absolute value of the current through R1?
-a) 1.886E-01 A
+b) 2.075E-01 A
-c) 2.282E-01 A
-d) 2.510E-01 A
-e) 2.761E-01 A
3) Two sources of emf ε1=29.3 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=5.65 kΩ and R2=2.68 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.81 mA and I4=0.525 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.717E+00 mA
-b) 1.888E+00 mA
-c) 2.077E+00 mA
+d) 2.285E+00 mA
-e) 2.514E+00 mA
4) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 2 20.3 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
1) The resistances in the figure shown are R1= 2.34 Ω, R2= 1.34 Ω, and R2= 2.94 Ω. V1 and V3 are text 0.609 V and 1.68 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.541 V. What is the absolute value of the current through R1?
-a) 1.464E-01 A
+b) 1.610E-01 A
-c) 1.772E-01 A
-d) 1.949E-01 A
-e) 2.144E-01 A
2) Two sources of emf ε1=44.4 V, and ε2=16.8 V are oriented as shownin the circuit. The resistances are R1=4.58 kΩ and R2=1.2 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=8.43 mA and I4=1.46 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 6.970E+00 mA
-b) 7.667E+00 mA
-c) 8.434E+00 mA
-d) 9.277E+00 mA
-e) 1.020E+01 mA
3) Three resistors, R1 = 0.686 Ω, and R2 = R2 = 1.58 Ω, are connected in parallel to a 8.97 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
+a) 1.173E+02 W
-b) 1.290E+02 W
-c) 1.419E+02 W
-d) 1.561E+02 W
-e) 1.717E+02 W
4) Two sources of emf ε1=38.9 V, and ε2=14.4 V are oriented as shownin the circuit. The resistances are R1=4.33 kΩ and R2=1.65 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=5.59 mA and I4=1.07 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Three resistors, R1 = 1.82 Ω, and R2 = R2 = 4.14 Ω, are connected in parallel to a 5.65 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
+a) 1.754E+01 W
-b) 1.929E+01 W
-c) 2.122E+01 W
-d) 2.335E+01 W
-e) 2.568E+01 W
2) Two sources of emf ε1=29.5 V, and ε2=11.0 V are oriented as shownin the circuit. The resistances are R1=2.45 kΩ and R2=1.96 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.03 mA and I4=0.783 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
+a) 2.247E+00 mA
-b) 2.472E+00 mA
-c) 2.719E+00 mA
-d) 2.991E+00 mA
-e) 3.290E+00 mA
3) The resistances in the figure shown are R1= 2.73 Ω, R2= 1.4 Ω, and R2= 2.35 Ω. V1 and V3 are text 0.549 V and 1.27 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.584 V. What is the absolute value of the current through R1?
-a) 1.213E-01 A
-b) 1.334E-01 A
-c) 1.468E-01 A
+d) 1.614E-01 A
-e) 1.776E-01 A
4) Two sources of emf ε1=27.1 V, and ε2=8.04 V are oriented as shownin the circuit. The resistances are R1=2.94 kΩ and R2=1.61 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=2.87 mA and I4=0.57 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
1) Two sources of emf ε1=49.6 V, and ε2=19.3 V are oriented as shownin the circuit. The resistances are R1=4.87 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.37 mA and I4=1.01 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 3.055E+00 mA
+b) 3.360E+00 mA
-c) 3.696E+00 mA
-d) 4.066E+00 mA
-e) 4.472E+00 mA
2) Three resistors, R1 = 1.23 Ω, and R2 = R2 = 2.73 Ω, are connected in parallel to a 5.41 V voltage source. Calculate the power dissipated by the smaller resistor (R1.)
-a) 1.788E+01 W
-b) 1.967E+01 W
-c) 2.163E+01 W
+d) 2.380E+01 W
-e) 2.617E+01 W
3) Two sources of emf ε1=16.8 V, and ε2=7.15 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.51 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.95 mA and I4=0.603 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 4.108E+00 V
+b) 4.519E+00 V
-c) 4.970E+00 V
-d) 5.468E+00 V
-e) 6.014E+00 V
4) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 569 V. If the combined external and internal resistance is 137 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 419.0 V?
-a) 1.043E+01 s
-b) 1.147E+01 s
-c) 1.262E+01 s
+d) 1.388E+01 s
-e) 1.527E+01 s
2) In the circuit shown V=13.5 V, R1=2.66 Ω, R2=7.29 Ω, and R3=14.5 Ω. What is the power dissipated by R2?
-a) 7.123E+00 W
-b) 7.835E+00 W
-c) 8.618E+00 W
-d) 9.480E+00 W
+e) 1.043E+01 W
3) A battery with a terminal voltage of 8.01 V is connected to a circuit consisting of 3 22.1 Ω resistors and one 14.5 Ω resistor. What is the voltage drop across the 14.5 Ω resistor?
-a) 9.818E-01 V
-b) 1.080E+00 V
-c) 1.188E+00 V
-d) 1.307E+00 V
+e) 1.437E+00 V
4) Two sources of emf ε1=18.2 V, and ε2=6.59 V are oriented as shownin the circuit. The resistances are R1=5.47 kΩ and R2=2.81 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=1.64 mA and I4=0.341 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
1) Two sources of emf ε1=38.9 V, and ε2=15.7 V are oriented as shownin the circuit. The resistances are R1=2.24 kΩ and R2=2.23 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.01 mA and I4=0.86 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 1.955E+00 mA
+b) 2.150E+00 mA
-c) 2.365E+00 mA
-d) 2.601E+00 mA
-e) 2.862E+00 mA
2) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s
3) In the circuit shown V=15.8 V, R1=1.86 Ω, R2=7.66 Ω, and R3=12.9 Ω. What is the power dissipated by R2?
-a) 1.157E+01 W
-b) 1.273E+01 W
-c) 1.400E+01 W
-d) 1.540E+01 W
+e) 1.694E+01 W
4) A battery with a terminal voltage of 8.14 V is connected to a circuit consisting of 2 21.5 Ω resistors and one 13.1 Ω resistor. What is the voltage drop across the 13.1 Ω resistor?
1) A battery with a terminal voltage of 14.1 V is connected to a circuit consisting of 3 15.7 Ω resistors and one 10.2 Ω resistor. What is the voltage drop across the 10.2 Ω resistor?
-a) 2.074E+00 V
-b) 2.282E+00 V
+c) 2.510E+00 V
-d) 2.761E+00 V
-e) 3.037E+00 V
2) Two sources of emf ε1=39.0 V, and ε2=15.9 V are oriented as shownin the circuit. The resistances are R1=3.4 kΩ and R2=2.12 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.58 mA and I4=0.978 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of I5?
-a) 2.150E+00 mA
-b) 2.365E+00 mA
+c) 2.602E+00 mA
-d) 2.862E+00 mA
-e) 3.148E+00 mA
3) In the circuit shown V=15.2 V, R1=1.6 Ω, R2=7.89 Ω, and R3=15.3 Ω. What is the power dissipated by R2?
+a) 1.713E+01 W
-b) 1.885E+01 W
-c) 2.073E+01 W
-d) 2.280E+01 W
-e) 2.508E+01 W
4) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 439 V. If the combined external and internal resistance is 221 &Omega and the capacitance is 54 mF, how long will it take for the capacitor's voltage to reach 350.0 V?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 319 V. If the combined external and internal resistance is 231 &Omega and the capacitance is 64 mF, how long will it take for the capacitor's voltage to reach 175.0 V?
-a) 9.718E+00 s
-b) 1.069E+01 s
+c) 1.176E+01 s
-d) 1.293E+01 s
-e) 1.423E+01 s
2) The resistances in the figure shown are R1= 1.81 Ω, R2= 1.18 Ω, and R2= 2.62 Ω. V1 and V3 are text 0.628 V and 2.54 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.748 V. What is the absolute value of the current through R1?
-a) 1.552E-01 A
-b) 1.707E-01 A
-c) 1.878E-01 A
-d) 2.065E-01 A
+e) 2.272E-01 A
3) Two sources of emf ε1=35.5 V, and ε2=12.3 V are oriented as shownin the circuit. The resistances are R1=4.49 kΩ and R2=1.53 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.63 mA and I4=0.972 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.093E+01 V
+b) 1.202E+01 V
-c) 1.322E+01 V
-d) 1.454E+01 V
-e) 1.600E+01 V
4) Two sources of emf ε1=36.7 V, and ε2=12.1 V are oriented as shownin the circuit. The resistances are R1=2.52 kΩ and R2=1.22 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.14 mA and I4=1.19 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 466 V. If the combined external and internal resistance is 123 &Omega and the capacitance is 76 mF, how long will it take for the capacitor's voltage to reach 331.0 V?
-a) 9.571E+00 s
-b) 1.053E+01 s
+c) 1.158E+01 s
-d) 1.274E+01 s
-e) 1.401E+01 s
2) The resistances in the figure shown are R1= 1.57 Ω, R2= 1.25 Ω, and R2= 3.38 Ω. V1 and V3 are text 0.585 V and 2.91 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.55 V. What is the absolute value of the current through R1?
-a) 1.427E-01 A
-b) 1.569E-01 A
+c) 1.726E-01 A
-d) 1.899E-01 A
-e) 2.089E-01 A
3) Two sources of emf ε1=57.0 V, and ε2=18.1 V are oriented as shownin the circuit. The resistances are R1=4.95 kΩ and R2=2.09 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.23 mA and I4=1.04 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
-a) 1.921E+01 V
+b) 2.114E+01 V
-c) 2.325E+01 V
-d) 2.557E+01 V
-e) 2.813E+01 V
4) Two sources of emf ε1=18.6 V, and ε2=5.63 V are oriented as shownin the circuit. The resistances are R1=3.9 kΩ and R2=1.1 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=3.41 mA and I4=0.614 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
1) Two sources of emf ε1=54.9 V, and ε2=19.8 V are oriented as shownin the circuit. The resistances are R1=3.93 kΩ and R2=1.31 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=9.18 mA and I4=1.83 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R2?
+a) 1.779E+01 V
-b) 1.957E+01 V
-c) 2.153E+01 V
-d) 2.368E+01 V
-e) 2.605E+01 V
2) Two sources of emf ε1=21.0 V, and ε2=8.72 V are oriented as shownin the circuit. The resistances are R1=3.12 kΩ and R2=1.15 kΩ. Three other currents enter and exit or exit from portions of the circuit that lie outside the dotted rectangle and are not shown. I3=4.41 mA and I4=0.816 mA enter and leave near R2, while the current I5 exits near R1.What is the magnitude (absolute value) of voltage drop across R1?
+a) 5.267E+00 V
-b) 5.794E+00 V
-c) 6.373E+00 V
-d) 7.011E+00 V
-e) 7.712E+00 V
3) In the circuit shown the voltage across the capaciator is zero at time t=0 when a switch is closed putting the capacitor into contact with a power supply of 327 V. If the combined external and internal resistance is 204 &Omega and the capacitance is 68 mF, how long will it take for the capacitor's voltage to reach 218.0 V?
-a) 1.385E+01 s
+b) 1.524E+01 s
-c) 1.676E+01 s
-d) 1.844E+01 s
-e) 2.028E+01 s
4) The resistances in the figure shown are R1= 2.41 Ω, R2= 1.74 Ω, and R2= 3.35 Ω. V1 and V3 are text 0.508 V and 1.36 V, respectively. But V2 is opposite to that shown in the figure, or, equivalently, V2=−0.595 V. What is the absolute value of the current through R1?