Quizbank/Electricity and Magnetism: Gauss' Law/T2


calcPhyEM_2GaussQuizzes/T2 ID153728160820

For more information visit Quizbank/Electricity and Magnetism: Gauss' Law

Exams:  A0  A1  A2   B0  B1  B2   C0  C1  C2   D0  D1  D2   E0  E1  E2   F0  F1  F2   G0  G1  G2   H0  H1  H2   I0  I1  I2   J0  J1  J2   K0  K1  K2   L0  L1  L2   M0  M1  M2   N0  N1  N2   O0  O1  O2   P0  P1  P2   Q0  Q1  Q2   R0  R1  R2   S0  S1  S2   T0  T1  T2  

Answers:   A0  A1  A2   B0  B1  B2   C0  C1  C2   D0  D1  D2   E0  E1  E2   F0  F1  F2   G0  G1  G2   H0  H1  H2   I0  I1  I2   J0  J1  J2   K0  K1  K2   L0  L1  L2   M0  M1  M2   N0  N1  N2   O0  O1  O2   P0  P1  P2   Q0  Q1  Q2   R0  R1  R2   S0  S1  S2   T0  T1  T2  

60 Tests = 3 versions x 20 variations: Each of the 20 variations (A, B, ...) represents a different random selection of questions taken from the study guide.The 3 versions (0,1,..) all have the same questions but in different order and with different numerical inputs. Unless all students take version "0" it is best to reserve it for the instructor because the questions are grouped according to the order in which they appear on the study guide.

Links:   Quizbank/Instructions   Study guide   file:QB-calcPhyEM_2GaussQuizzes-T2.pdf

Contact me at User talk:Guy vandegrift if you need any help.

T2 A0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 A1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface

T2 A2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface

T2 B0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 B1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant in direction over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface

T2 B2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 C0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 C1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant in direction over the entire Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 C2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 D0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 D1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 D2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant in direction over the entire Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

T2 E0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 E1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface

T2 E2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 F0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 F1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

T2 F2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 G0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 G1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 G2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

T2 H0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 H1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

T2 H2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 I0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 I1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 I2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant in direction over the entire Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction over a portion of the Gaussian surface

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 J0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 J1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 J2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface

T2 K0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 K1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 K2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant in direction over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 L0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 L1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 L2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

T2 M0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 M1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

T2 M2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

T2 N0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 N1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 N2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 O0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 O1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 O2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

T2 P0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 P1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

T2 P2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

T2 Q0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 Q1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 Q2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant magnitude over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 R0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 R1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

T2 R2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

a) True
b) False

T2 S0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant in direction over the entire Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 S1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface

T2 S2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 T0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 T1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction over a portion of the Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

T2 T2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

a) True
b) False
  1. blank page
  2. blank page
  3. blank page
  4. blank page
  5. blank page
  6. blank page
  7. blank page
  8. blank page
  9. blank page
  10. blank page
  11. blank page
  12. blank page
  13. blank page
  14. blank page
  15. blank page
  16. blank page
  17. blank page
  18. blank page
  19. blank page
  20. blank page
  1. of 10 blank lines to separate exams from keys
  2. of 10 blank lines to separate exams from keys
  3. of 10 blank lines to separate exams from keys
  4. of 10 blank lines to separate exams from keys
  5. of 10 blank lines to separate exams from keys
  6. of 10 blank lines to separate exams from keys
  7. of 10 blank lines to separate exams from keys
  8. of 10 blank lines to separate exams from keys
  9. of 10 blank lines to separate exams from keys
  10. of 10 blank lines to separate exams from keys

Key: A0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: A1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface


Key: A2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface


Key: B0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: B1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant in direction over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface


Key: B2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: C0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: C1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant in direction over the entire Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: C2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: D0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: D1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: D2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant in direction over the entire Gaussian surface
-b) constant direction over a portion of the Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False


Key: E0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: E1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface


Key: E2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: F0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: F1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False


Key: F2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: G0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: G1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: G2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False


Key: H0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: H1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False


Key: H2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: I0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: I1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: I2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant in direction over the entire Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction over a portion of the Gaussian surface

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: J0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: J1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: J2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface


Key: K0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: K1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: K2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant in direction over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: L0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: L1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: L2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False


Key: M0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: M1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False


Key: M2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False


Key: N0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: N1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: N2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: O0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: O1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: O2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False


Key: P0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: P1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False


Key: P2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False


Key: Q0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: Q1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: Q2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: R0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: R1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False


Key: R2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface

-a) True
+b) False


Key: S0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant in direction over the entire Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: S1

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface


Key: S2

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface

+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: T0

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False

2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
-b) constant direction over a portion of the Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False


Key: T1

edit

1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction over a portion of the Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False


Key: T2

edit
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False

3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had

-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False

5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface

-a) True
+b) False