60 Tests = 3 versions x 20 variations: Each of the 20 variations (A, B, ...) represents a different random selection of questions taken from the study guide.The 3 versions (0,1,..) all have the same questions but in different order and with different numerical inputs. Unless all students take version "0" it is best to reserve it for the instructor because the questions are grouped according to the order in which they appear on the study guide.
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant in direction over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant in direction over the entire Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant in direction over the entire Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant in direction over the entire Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant direction over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant in direction over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant in direction over the entire Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant magnitude over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant in direction over the entire Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant direction and magnitude over the entire Gaussian surface
c) constant in direction over the entire Gaussian surface
d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant direction over a portion of the Gaussian surface
c) constant magnitude over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction over a portion of the Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction and magnitude over the entire Gaussian surface
d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
a) constant direction and magnitude over the entire Gaussian surface
b) constant magnitude over a portion of the Gaussian surface
c) constant direction over a portion of the Gaussian surface
d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
a) True
b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant in direction over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant in direction over the entire Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant in direction over the entire Gaussian surface
-b) constant direction over a portion of the Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant in direction over the entire Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction over a portion of the Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction and magnitude over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
-b) constant in direction over the entire Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant direction over a portion of the Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant in direction over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant in direction over the entire Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
+a) constant magnitude over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
-d) constant direction over a portion of the Gaussian surface
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated inside the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant in direction over the entire Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant direction over a portion of the Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated on the Gaussian surface
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
-b) constant direction and magnitude over the entire Gaussian surface
-c) constant in direction over the entire Gaussian surface
+d) constant magnitude over a portion of the Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
-b) constant direction over a portion of the Gaussian surface
+c) constant magnitude over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface
-a) True
+b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
3) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
4) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction over a portion of the Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction and magnitude over the entire Gaussian surface
-d) constant in direction over the entire Gaussian surface
5) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
1) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
2) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
-a) True
+b) False
3) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , had
-a) constant direction and magnitude over the entire Gaussian surface
+b) constant magnitude over a portion of the Gaussian surface
-c) constant direction over a portion of the Gaussian surface
-d) constant in direction over the entire Gaussian surface
4) In this description of the flux element, (j=1,2,3) where is the outward unit normal, and a positive charge is assumed at point O, inside the Gaussian surface shown. The field lines exit at and but enter at . In this figure,
+a) True
-b) False
5) If Gauss' law can be reduced to an algebraic expression that easily calculates the electric field , was calculated outside the Gaussian surface