Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Propositional logic/Tautology/Truth table/Exercise
Language
Watch
Edit
Prove, with the help of truth tables, that the following statements are tautologies.
(
α
∧
α
)
↔
α
{\displaystyle {}(\alpha \wedge \alpha )\leftrightarrow \alpha }
.
α
∧
β
→
α
{\displaystyle {}\alpha \wedge \beta \rightarrow \alpha }
.
α
→
(
β
→
α
)
{\displaystyle {}\alpha \rightarrow {\left(\beta \rightarrow \alpha \right)}}
.
(
α
→
(
β
→
γ
)
)
→
(
(
α
→
β
)
→
(
α
→
γ
)
)
{\displaystyle {}{\left(\alpha \rightarrow {\left(\beta \rightarrow \gamma \right)}\right)}\rightarrow {\left({\left(\alpha \rightarrow \beta \right)}\rightarrow {\left(\alpha \rightarrow \gamma \right)}\right)}}
.
(
α
→
β
)
↔
(
¬
α
∨
β
)
{\displaystyle {}{\left(\alpha \rightarrow \beta \right)}\leftrightarrow (\neg \alpha \vee \beta )}
.
Create a solution