Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Primitive function/1 over 1- x^2/Fact/Proof
Language
Watch
Edit
Proof
(
1
2
⋅
ln
1
+
x
1
−
x
)
′
=
1
2
⋅
1
−
x
1
+
x
⋅
(
1
−
x
)
+
(
1
+
x
)
(
1
−
x
)
2
=
1
2
⋅
2
(
1
+
x
)
(
1
−
x
)
=
1
(
1
−
x
2
)
.
{\displaystyle {}{\begin{aligned}{\left({\frac {1}{2}}\cdot \ln {\frac {1+x}{1-x}}\right)}^{\prime }&={\frac {1}{2}}\cdot {\frac {1-x}{1+x}}\cdot {\frac {(1-x)+(1+x)}{(1-x)^{2}}}\\&={\frac {1}{2}}\cdot {\frac {2}{(1+x)(1-x)}}\\&={\frac {1}{(1-x^{2})}}.\end{aligned}}}
To fact