Portal:Radiation astronomy/Resource/12
Beta particles
editA number of subatomic reactions can be detected in astronomy that yield beta particles. The detection of beta particles or the reactions that include them in an astronomical situation is beta-particles astronomy.
Beta particles are high-energy, high-speed electrons or positrons.
Beta particles may be the key to fusion. "If the exterior of the capsule is maintained at a uniform temperature of about 19.5 K, the natural beta decay energy of the tritium will accomplish this through a process known as "beta layering." The very low energy beta particles from tritium decay deposit their energy very close to the location of the original tritium atoms."[1]
"Beta-particles leaving the upper surface of the lunar sample could trigger the upper beta detector, while the lower beta-detector was triggered by beta particles from the lower surface of the sample."[2]
Notation: let the symbol β− designate an unbound electron in motion.
Notation: let β+ designate an unbound positron in motion.
Notation: let TGF stand for a Terrestrial Gamma-ray Flash.
References
edit- ↑ K. R. Schultz (September 1998). "Cost Effective Steps to Fusion power: IFE target fabrication, injection and tracking". Journal of Fusion Energy 17 (3): 237-46. doi:10.1023/A:1021814514091. http://www.springerlink.com/content/r7u527p786144l7k/. Retrieved 2012-06-08.
- ↑ L. A. Rancitelli, R. W. Perkins, W. D. Felix, and N. A. Wogman (1971). "Erosion and mixing of the lunar surface from cosmogenic and primordial radio-nuclide measurements in Apollo 12 lunar samples". Proceedings of the Lunar Science Conference 2: 1757-72. http://adsabs.harvard.edu/full/1971LPSC....2.1757R. Retrieved 2012-06-08.