Let K {\displaystyle {}K} be a field and let K [ X ] {\displaystyle {}K[X]} be the polynomial ring over K {\displaystyle {}K} . Let a ∈ K {\displaystyle {}a\in K} . Prove that the evaluating function
satisfies the following properties (here let P , Q ∈ K [ X ] {\displaystyle {}P,Q\in K[X]} ).