PlanetPhysics/Superdiagrams As Heterofunctors

Superdiagrams are defined as heterofunctors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikiversity.org/v1/":): {\displaystyle \F_S} that are subject to ETAS axioms and link categorical diagrams (regarded as (homo)functors, which are subject to the eight ETAC axioms) in a manner similar to how groupoids are being constructed as many-object structures of linked groups with all invertible morphisms between the linked groups. Thus, in the supercategory definition--instead of a groupoid with all invertible morphisms-- one replaces the linked groups by several 's linked by hetero-functors Failed to parse (unknown function "\F"): {\displaystyle \F_S} between such categorical diagrams or categorical sequences with different structure. The heterofunctors corresponding to superdiagrams also need not be invertible (as in the case of supergroupoid structures). In this construction, one defines a supercategorical diagram in terms of the composition "" of the heterofunctors Failed to parse (unknown function "\F"): {\displaystyle \F_S} with the (homo)functors determined by , so that Failed to parse (unknown function "\F"): {\displaystyle \F_S * F_C := \F_S (F_C);} the right hand side of this equation is to be interpreted as a heterofunctor acting on the (homo)functor(s) determined by the categorical diagram, or the categorical sequence, .

Remark In a certain sense, the superdiagrams defined here as superfunctors resemble also the groupoid functor categories, as well as topological categories, if one regards the class of links between the different types of categorical diagrams as a meta-network or metagraph (in the sense defined by Mac Lane and Moerdijk (2000).