# PlanetPhysics/R Module

\newcommand{\sqdiagram}{$\displaystyle \diagram #1 \rto^{#2} \dto_{#4}& \eqno{\mbox{#9}}$ }

### R-Module and left/right module definitions

Consider a ring $R$  with identity. Then a left module $M_{L}$  over $R$  is defined as a set with two binary operations, $+:M_{L}\times M_{L}\longrightarrow M_{L}$  and $\bullet :R\times M_{L}\longrightarrow M_{L},$  such that

1. $\displaystyle (\u+\v)+\w = \u+(\v+\w)$ for all $\displaystyle \u,\v,\w \in M_L$
2. $\displaystyle \u+\v=\v+\u$ for all $\displaystyle \u,\v\in M_L$
3. There exists an element $\displaystyle \0 \in M_L$ such that $\displaystyle \u+\0=\u$ for all $\displaystyle \u \in M_L$
4. For any $\displaystyle \u \in M_L$ , there exists an element $\displaystyle \v \in M_L$ such that $\displaystyle \u+\v=\0$
5. $\displaystyle a \bullet (b \bullet \u) = (a \bullet b) \bullet \u$ for all $a,b\in R$  and $\displaystyle \u \in M_L$
6. $\displaystyle a \bullet (\u+\v) = (a \bullet\u) + (a \bullet \v)$ for all $a\in R$  and $\displaystyle \u,\v \in M_L$
7. $\displaystyle (a + b) \bullet \u = (a \bullet \u) + (b \bullet \u)$ for all $a,b\in R$  and $\displaystyle \u \in M_L$

A right module $M_{R}$  is analogously defined to $M_{L}$  except for two things that are different in its definition:

1. the morphism "$\bullet$ " goes from $M_{R}\times R$  to $M_{R},$  and
1. the scalar multiplication operations act on the right of the elements.

An R-module generalizes the concept of module to $n$ -objects by employing Mitchell's definition of a "ring with n-objects" $R_{n}$ ; thus an $R$ -module is in fact an $R_{n}$  module with this notation.

### Remarks

One can define the categories of left- and - right R-modules, whose objects are, respectively, left- and - right R-modules, and whose arrows are R-module morphisms.

If the ring $R$  is commutative one can prove that the category of left $R$ --modules and the category of right $R$ --modules are equivalent (in the sense of an equivalence of categories, or categorical equivalence).