PlanetPhysics/Grothendieck Category Lemma
Introduction: proper generator
editLet us recall that a generator of a Grothendieck category is called proper if has the property that a monomorphism induces an isomorphism if and only if is an isomorphism (viz. p. 251 in ref. [1]).
Grothendieck category lemma
edit\begin{lemma} Any Grothendieck category has a proper generator. \end{lemma}
All Sources
editReferences
edit- ↑ 1.0 1.1 Nicolae Popescu. Abelian Categories with Applications to Rings and Modules. , Academic Press: New York and London, 1973 and 1976 edns., (English translation by I. C. Baianu .)
- ↑ Leila Schneps. 1994. The Grothendieck Theory of Dessins d'Enfants. (London Mathematical Society Lecture Note Series), Cambridge University Press, 376 pp.
- ↑ David Harbater and Leila Schneps. 2000. Fundamental groups of moduli and the Grothendieck-Teichm\"uller group, Trans. Amer. Math. Soc . 352 (2000), 3117-3148. MSC: Primary 11R32, 14E20, 14H10; Secondary 20F29, 20F34, 32G15.