PlanetPhysics/Grothendieck Category Lemma

Introduction: proper generator

edit

Let us recall that a generator of a Grothendieck category is called proper if has the property that a monomorphism induces an isomorphism if and only if is an isomorphism (viz. p. 251 in ref. [1]).

Grothendieck category lemma

edit

\begin{lemma} Any Grothendieck category has a proper generator. \end{lemma}

All Sources

edit

[1] [2] [3]

References

edit
  1. 1.0 1.1 Nicolae Popescu. Abelian Categories with Applications to Rings and Modules. , Academic Press: New York and London, 1973 and 1976 edns., (English translation by I. C. Baianu .)
  2. Leila Schneps. 1994. The Grothendieck Theory of Dessins d'Enfants. (London Mathematical Society Lecture Note Series), Cambridge University Press, 376 pp.
  3. David Harbater and Leila Schneps. 2000. Fundamental groups of moduli and the Grothendieck-Teichm\"uller group, Trans. Amer. Math. Soc . 352 (2000), 3117-3148. MSC: Primary 11R32, 14E20, 14H10; Secondary 20F29, 20F34, 32G15.