# PlanetPhysics/Grassmann Hopf Algebras and Coalgebrasgebras

\newcommand{\sqdiagram}[9]{$\displaystyle \diagram #1 \rto^{#2} \dto_{#4}& \eqno{\mbox{#9}}$ }

### Definitions of Grassmann-Hopf Algebras, Their Dual Co-Algebras, Gebras, Grassmann--Hopf Algebroids and Gebroids

Let ${\displaystyle V}$ be a (complex) vector space, ${\displaystyle \dim _{\mathcal {C}}V=n}$, and let ${\displaystyle \{e_{0},e_{1},\ldots ,\}}$ with identity ${\displaystyle e_{0}\equiv 1}$, be the generators of a Grassmann (exterior) algebra

${\displaystyle \Lambda ^{*}V=\Lambda ^{0}V\oplus \Lambda ^{1}V\oplus \Lambda ^{2}V\oplus \cdots }$

subject to the relation ${\displaystyle e_{i}e_{j}+e_{j}e_{i}=0}$~. Following Fauser (2004) we append this algebra with a Hopf structure to obtain a co--gebra' based on the interchange (or \textsl{tangled \htmladdnormallink{duality'}}{http://planetphysics.us/encyclopedia/GroupoidSymmetries.html}):

$\displaystyle =(''objects/points'' , ''morphisms'' )= \mapsto =(\textsl{morphisms= , \textsl{objects/points.})}$

This leads to a \textsl{tangle duality} between an associative (unital algebra) $\displaystyle \A=(A,m)$ , and an associative (unital) co--gebra' ${\displaystyle {\mathcal {C}}=(C,\Delta )}$ :

 \item[i] the binary product $\displaystyle A \otimes A \ovsetl{m} A$
, and \item[ii] the coproduct $\displaystyle C \ovsetl{\Delta} C \otimes C$
,


where the Sweedler notation (Sweedler, 1996), with respect to an arbitrary basis is adopted: $\displaystyle \Delta (x) &= \sum_r a_r \otimes b_r = \sum_{(x)} x_{(1)} \otimes x_{(2)} = x _{(1)} \otimes x_{(2)} \\ \Delta (x^i) &= \sum_i \Delta^{jk}_i = \sum_{(r)} a^j_{(r)} \otimes b^k_{(r)} = x _{(1)} \otimes x_{(2)}$

Here the ${\displaystyle \Delta _{i}^{jk}}$ are called section coefficients'. We have then a generalization of associativity to coassociativity:

$CD}"): {\displaystyle \begin{CD} C @> \Delta >> C \otimes C \\ @VV \Delta V @VV \ID \otimes \Delta V \\ C \otimes C @> \Delta \otimes \ID >> C \otimes C \otimes C \end{CD}$

inducing a tangled duality between an associative (unital algebra ${\displaystyle {\mathcal {A}}=(A,m)}$, and an associative (unital) co--gebra' ${\displaystyle {\mathcal {C}}=(C,\Delta )}$~. The idea is to take this structure and combine the Grassmann algebra ${\displaystyle (\Lambda ^{*}V,\wedge )}$ with the co-gebra' ${\displaystyle (\Lambda ^{*}V,\Delta _{\wedge })}$ (the tangled dual') along with the Hopf algebra compatibility rules: 1) the product and the unit are co--gebra' morphisms, and 2) the coproduct and counit are algebra morphisms.

Next we consider the following ingredients:

 \item[(1)] the graded switch [/itex]\hat{\tau} (A \otimes B) = (-1)^{\del A \del B} B \otimes A$\displaystyle \item[(2)] the counit $\varepsilon$ (an algebra morphism) satisfying$(\varepsilon \otimes \ID) \Delta = \ID = (\ID \otimes \varepsilon) \Delta$\displaystyle \item[(3)] the antipode [itex]S$
~.


The Grassmann-Hopf algebra ${\displaystyle {\widehat {H}}}$ thus consists of--is defined by-- the septet $\displaystyle \widehat{H}=(\Lambda^*V, \wedge, \ID, \varepsilon, \hat{\tau},S)~$ .

Its generalization to a Grassmann-Hopf algebroid is straightforward by considering a groupoid $\displaystyle \grp$ , and then defining a ${\displaystyle H^{\wedge }-''Algebroid''}$ as a quadruple $\displaystyle (GH, \Delta, \vep, S)$ by modifying the Hopf algebroid definition so that $\displaystyle \widehat{H} = (\Lambda^*V, \wedge, \ID, \varepsilon, \hat{\tau},S)$ satisfies the standard Grassmann-Hopf algebra axioms stated above. We may also say that $\displaystyle (HG, \Delta, \vep, S)$ is a \emph{weak C*-Grassmann-Hopf algebroid} when ${\displaystyle H^{\wedge }}$ is a unital C*-algebra (with ${\displaystyle \mathbf {1} }$). We thus set ${\displaystyle \mathbb {F} =\mathbb {C} ~}$. Note however that the tangled-duals of Grassman-Hopf algebroids retain both the intuitive interactions and the dynamic diagram advantages of their physical, extended symmetry representations exhibited by the Grassman-Hopf al/gebras and co-gebras over those of either weak C*- Hopf algebroids or weak Hopf C*- algebras.

## References

1. E. M. Alfsen and F. W. Schultz: Geometry of State Spaces of Operator Algebras , Birkh\"auser, Boston--Basel--Berlin (2003).
2. I. Baianu : Categories, Functors and Automata Theory: A Novel Approach to Quantum Automata through Algebraic--Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS , (August-Sept. 1971).
3. I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non--Abelian, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17 ,(3-4): 353-408(2007).
4. I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, Towards Quantum Non--Abelian Algebraic Topology , (2008).
5. F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1--4): 181--201 (2002).
6. J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity. Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001). Intl. J. Modern Phys. A 18 , October, suppl., 97--113 (2003)
7. M. Chaician and A. Demichev: Introduction to Quantum Groups , World Scientific (1996).
8. Coleman and De Luccia: Gravitational effects on and of vacuum decay., Phys. Rev. D 21 : 3305 (1980).
9. L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys . 35 (no. 10): 5136--5154 (1994).
10. W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, 13 :611-632 (1996). doi: 10.1088/0264--9381/13/4/004
11. V. G. Drinfel'd: Quantum groups, In \emph{Proc. Int. Congress of Mathematicians, Berkeley, 1986}, (ed. A. Gleason), Berkeley, 798-820 (1987).
12. G. J. Ellis: Higher dimensional crossed modules of algebras, J. of Pure Appl. Algebra 52 : 277-282 (1988), .
13. P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys. , 196 : 591-640 (1998).
14. P. I. Etingof and A. N. Varchenko: Exchange dynamical quantum groups, Commun. Math. Phys. 205 (1): 19-52 (1999)
15. P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang--Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999) , pp. 89-129, Cambridge University Press, Cambridge, 2001.
16. B. Fauser: A treatise on quantum Clifford Algebras . Konstanz, Habilitationsschrift. \\ arXiv.math.QA/0202059 (2002).
17. B. Fauser: Grade Free product Formulae from Grassmann--Hopf Gebras. Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering , Birkh\"{a}user: Boston, Basel and Berlin, (2004).
18. J. M. G. Fell.: The Dual Spaces of C*--Algebras., \emph{Transactions of the American Mathematical Society}, 94 : 365--403 (1960).
19. F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics. , Boca Raton: CRC Press, Inc (1996).
20. R. P. Feynman: Space--Time Approach to Non--Relativistic Quantum Mechanics, {\em Reviews of Modern Physics}, 20: 367--387 (1948). [It is also reprinted in (Schwinger 1958).]
21. A.~Fr{\"o}hlich: Non-Abelian Homological Algebra. {I}.{D}erived functors and satellites.\/, Proc. London Math. Soc. , 11 (3): 239--252 (1961).
22. R. Gilmore: Lie Groups, Lie Algebras and Some of Their Applications. , Dover Publs., Inc.: Mineola and New York, 2005.
23. P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc . 242 : 1--33(1978).
24. P. Hahn: The regular representations of measure groupoids., Trans. Amer. Math. Soc . 242 :34--72(1978).
25. R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras ., New York and London: Nelson Press.
26. C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theory, (2008) \\ arXiv:0709.4364v2 [quant--ph]