PlanetPhysics/Bibliography for Operator Algebras in Mathematical Physics and AQFT A to K

Bibliography for Operator Algebras in Mathematical Physics and Algebraic Quantum Field Theories (AQFT):Edit

Alphabetical order: letters from A to K

\begin{thebibliography} {299}

</ref>[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157][158][159][160][161][162][163][164][165][166][167][168][169][170][171][172][173][174][175][176][177][178][179][180][181][182][183][184][185][186][187][188][189][190][191][192][193][194][195][196][197][198][199][200][201][202][203][204][205][206][207][208][209][210][211][212][213][214][215][216][217][218][219][220][221][222][223][224][225][226][227][228][229][230][231][232][233][234][235][236][237][238][239][240][241][242][243][244][245][246][247][248][249][250][251][252][253][254][255][256][257][258][259][260][261][262][263][264][265][266][267][268][269][270][271][272][273][274][275][276][277][278][279][280][281][282][283][284][285][286][287][288][289][290][291][292][293][294][295][296][297][298][299][300][301][302][303][304][305][306][307][308][309][310][311][312][313][314][315][316][317][318][319][320][321][322][323][324][325][326][327][328][329][330][331][332][333][334][335][336][337][338][339][340][341][342][343][344][345][346][347][348][349][350][351][352][353][354][355][356][357][358][359][360][361][362][363][364][365][366][367][368][369][370][371][372][373][374][375][376][377][378][379][380][381][382][383][384]</references>

  1. Akutsu, Y. and Wadati, M. (1987). Knot invariants and critical statistical systems. Journal of the Physics Society of Japan , {\mathbf 56}, 839--842.
  2. Alexander, J. W. (1930). The combinatorial theory of complexes. Annals of Mathematics , {\mathbf (2) 31}, 294--322.
  3. Andrews, G. E., Baxter, R. J. and Forrester, P.J. (1984). Eight vertex SOS model and generalized Rogers--Ramanujan type identities. Journal of Statistical Physics , {\mathbf 35}, 193--266.
  4. Aoi, H. and Yamanouchi, T. (in press). Construction of a canonical subfactor for an inclusion of factors with a common Cartan subalgebra. {\rm Hokkaido Mathematical Journal}.
  5. Arcuri, R. C., Gomes, J. F. and D. I. Olive (1987). Conformal subalgebras and symmetric spaces. Nuclear Physics B , {\mathbf 285}, 327--339.
  6. Artin, E. (1947). Theory of braids. Annals of Mathematics , {\mathbf 48} 101--126.
  7. Asaeda, M. (2007). Galois groups and an obstruction to principal graphs of subfactors. International Journal of Mathematics , {\mathbf 18}, 191--202. math.OA/0605318.
  8. Asaeda, M. and Haagerup, U. (1999). Exotic subfactors of finite depth with Jones indices   and  . Communications in Mathematical Physics , {\mathbf 202}, 1--63.
  9. Asaeda, M. and Yasuda, S. (preprint 2007). On Haagerup's list of potential principal graphs of subfactors. arXiv:0711.4144.
  10. Atiyah, M. (1967).  -theory. W. A. Benjamin Inc., New York .
  11. Atiyah, M. (1989). Topological quantum field theory. Publication Math\'ematiques IHES , {\mathbf 68}, 175--186.
  12. Aubert, P.-L. (1976). Th\'eorie de Galois pour une  -alg\`ebre. Commentarii Mathematici Helvetici , {\mathbf 39 (51)}, 411--433.
  13. Baez, J. C., Segal, I. E. and Zhou, Z. (1992). Introduction to algebraic and constructive quantum field theory. Princeton University Press .
  14. Bakalov, B. and Kirillov, A. Jr. (2001). Lectures on tensor categories and modular functors. University Lecture Series {\mathbf 21}, Amer. Math. Soc.
  15. Banica, T. (1997). Le groupe quantique compact libre  , Communications in Mathematical Physics , {\mathbf 190}, 143--172.
  16. Banica, T. (1998). Hopf algebras and subfactors associated to vertex models. Journal of Functional Analysis , {\mathbf 159}, 243--266.
  17. Banica, T. (1999). Representations of compact quantum groups and subfactors. Journal f\"ur die Reine und Angewandte Mathematik , {\mathbf 509}, 167--198.
  18. Banica, T. (1999). Fusion rules for representations of compact quantum groups. Expositiones Mathematicae , {\mathbf 17}, 313--337.
  19. Banica, T. (1999). Symmetries of a generic coaction. Mathematische Annalen , {\mathbf 314}, 763--780.
  20. Banica, T. (2000). Compact Kac algebras and commuting squares. Journal of Functional Analysis , {\mathbf 176}, 80--99.
  21. Banica, T. (2001). Subfactors associated to compact Kac algebras. Integral Equations Operator Theory , {\mathbf 39}, 1--14.
  22. Banica, T. (2002). Quantum groups and Fuss-Catalan algebras. Communications in Mathematical Physics , {\mathbf 226}, 221--232
  23. Banica, T. (2005). The planar algebra of a coaction. Journal of Operator Theory {\mathbf 53}, 119--158.
  24. Banica, T. (2005). Quantum automorphism groups of homogeneous graphs. Journal of Functional Analysis , {\mathbf 224}, 243--280.
  25. Banica, T. (2005). Quantum automorphism groups of small metric spaces. Pacific Journal of Mathematics , {\mathbf 219}, 27--51.
  26. Baxter, R. J. (1981).Rogers--Ramanujan identities in the Hard Hexagon model. Journal of Statistical Physics , {\mathbf 26}, 427--452.
  27. Baxter, R. J. (1982). Exactly solved models in statistical mechanics . Academic Press, New York.
  28. Baxter, R. J. (1988). The superintegrable chiral Potts model. Physics Letters A , {\mathbf 133}, 185--189.
  29. Baxter, R. J. (1989). A simple solvable   Hamiltonian. Physics Letters A , {\mathbf 140}, 155--157.
  30. Baxter, R. J. (1989). Superintegrable Chiral Potts model: thermodynamic properties, an "inverse" model, and a simple associated Hamiltonian. {\em Journal of Statistical Physics}, {\mathbf 57}, 1--39.
  31. Baxter, R. J., Kelland, S. B. and Wu, F. Y. (1976). Potts model or Whitney Polynomial. Journal of Physics. A. Mathematical and General , {\mathbf 9}, 397--406.
  32. Baxter, R. J., Perk, J. H. H. and Au-Yang, H. (1988). New solutions of the star-triangle relations for the chiral Potts model. Physics Letters A {\mathbf 128}, 138--142.
  33. Baxter, R. J., Temperley, H. N. V. and Ashley, S. E. (1978). Triangular Potts model and its transition temperature and related models. Proceedings of the Royal Society of London A , {\mathbf 358}, 535--559.
  34. Behrend, R. E., Evans, D. E. (preprint 2003). Integrable Lattice Models for Conjugate  . hep-th/0309068.
  35. Behrend, R. E., Pearce, P. A., Petkova, V. B. and Zuber, J-B. (2000). Boundary conditions in rational conformal field theories. Nuclear Physics B , {\mathbf 579}, 707--773.
  36. Belavin, A. A., Polyakov, A. M. and Zamolodchikov, A. B. (1980). Infinite conformal symmetry in two-dimensional quantum field theory. Nuclear Physics B , {\mathbf 241}, 333--380.
  37. Berezin, F. A. (1966). A method of second quantization. Academic Press , London/New York.
  38. Bertozzini, P., Conti, R. and Longo, R. (1998) Covariant sectors with infinite dimension and positivity of the energy. Communications in Mathematical Physics , {\mathbf 193}, 471--492.
  39. Bion-Nadal, J. (1992). Subfactor of the hyperfinite   factor with Coxeter graph   as invariant. Journal of Operator Theory , {\mathbf 28}, 27--50.
  40. Birman, J. (1974). Braids, links and mapping class groups. Annals of Mathematical Studies , {\mathbf 82}.
  41. Birman, J. S. and Wenzl, H. (1989). Braids, link polynomials and a new algebra. Transactions of the American Mathematical Society , {\mathbf 313}, 249--273.
  42. Bisch, D. (1990). On the existence of central sequences in subfactors. Transactions of the American Mathematical Society , {\mathbf 321}, 117--128.
  43. Bisch, D. (1992). Entropy of groups and subfactors. Journal of Functional Analysis , {\mathbf 103}, 190--208.
  44. Bisch, D. (1994). A note on intermediate subfactors. Pacific Journal of Mathematics , {\mathbf 163}, 201--216.
  45. Bisch, D. (1994). On the structure of finite depth subfactors. in Algebraic methods in operator theory , (ed. R. Curto and P. E. T. J\"orgensen), Birkh\"auser, 175--194.
  46. Bisch, D. (1994). Central sequences in subfactors II. Proceedings of the American Mathematical Society , {\mathbf 121}, 725--731.
  47. Bisch, D. (1994). An example of an irreducible subfactor of the hyperfinite II  factor with rational, non-integer index. {\em Journal f\"ur die Reine und Angewandte Mathematik}, {\mathbf 455}, 21--34.
  48. Bisch, D. (1997). Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In Operator algebras and their applications . Fields Institute Communications, Vol. 13, American Math. Soc., 13--63.
  49. Bisch, D. (1998). Principal graphs of subfactors with small Jones index. Mathematische Annalen , {\mathbf 311}, 223--231.
  50. Bisch, D. (2002). Subfactors and planar algebras. Proc. ICM-2002, Beijing , {\mathbf 2}, 775--786.
  51. Bisch, D. and Haagerup, U. (1996). Composition of subfactors: New examples of infinite depth subfactors. {\em Annales Scientifiques de l'\'Ecole Normale Superieur}, {\mathbf 29}, 329--383.
  52. Bisch, D. and Jones, V. F. R. (1997). Algebras associated to intermediate subfactors. Inventiones Mathematicae , {\mathbf 128}, 89--157.
  53. Bisch, D. and Jones, V. F. R. (1997). A note on free composition of subfactors. In Geometry and Physics, (Aarhus 1995) , Marcel Dekker, Lecture Notes in Pure and Applied Mathematics, Vol. 184, 339--361.
  54. Bisch, D. and Jones, V. F. R. (2000). Singly generated planar algebras of small dimension. Duke Mathematical Journal , {\mathbf 101}, 41--75.
  55. Bisch, D. and Jones, V. F. R. (2003). Singly generated planar algebras of small dimension. II Advances in Mathematics , {\mathbf 175}, 297--318.
  56. Bisch, D., Nicoara, R. and Popa, S. (2007). Continuous families of hyperfinite subfactors with the same standard invariant. International Journal of Mathematics , {\mathbf 18}, 255--267. math.OA/0604460.
  57. Bisch, D. and Popa, S. (1999). Examples of subfactors with property T standard invariant. Geometric and Functional Analysis , {\mathbf 9}, 215--225.
  58. B\"ockenhauer, J. (1996). An algebraic formulation of level one Wess-Zumino-Witten models. Reviews in Mathematical Physics , {\mathbf 8}, 925--947.
  59. B\"ockenhauer, J. and Evans, D. E. (1998). Modular invariants, graphs and  -induction for nets of subfactors I. Communications in Mathematical Physics , {\mathbf 197}, 361--386.
  60. B\"ockenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and  -induction for nets of subfactors II. Communications in Mathematical Physics , {\mathbf 200}, 57--103.
  61. B\"ockenhauer, J. and Evans, D. E. (1999). Modular invariants, graphs and  -induction for nets of subfactors III. Communications in Mathematical Physics , {\mathbf 205}, 183--228.
  62. B\"ockenhauer, J. and Evans, D. E. (2000). Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Communications in Mathematical Physics , {\mathbf 213}, 267--289.
  63. B\"ockenhauer, J. and Evans, D. E. (2002). Modular invariants from subfactors. in Quantum Symmetries in Theoretical Physics and Mathematics (ed. R. Coquereaux et al.), Comtemp. Math. {\mathbf 294}, Amer. Math. Soc., 95--131. math.OA/0006114.
  64. B\"ockenhauer, J. and Evans, D. E. (2001). Modular invariants and subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications {\mathbf 30}, Providence, Rhode Island: AMS Publications, 11--37. math.OA/0008056.
  65. B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (1999). On  -induction, chiral generators and modular invariants for subfactors. Communications in Mathematical Physics , {\mathbf 208}, 429--487. math.OA/9904109.
  66. B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (2000). Chiral structure of modular invariants for subfactors. Communications in Mathematical Physics , {\mathbf 210}, 733--784. math.OA/9907149.
  67. B\"ockenhauer, J., Evans, D. E. and Kawahigashi, Y. (2001). Longo-Rehren subfactors arising from  -induction. Publications of the RIMS, Kyoto University , {\mathbf 37}, 1--35. math.OA/0002154.
  68. de Boer, J. and Goeree, J. (1991). Markov traces and II  factors in conformal field theory. Communications in Mathematical Physics , {\mathbf 139}, 267--304.
  69. Bongaarts, P. J. M. (1970). The electron-positron field, coupled to external electromagnetic potentials as an elementary  -algebra theory. Annals of Physics , {\mathbf 56}, 108--138.
  70. Bratteli, O. (1972). Inductive limits of finite dimensional  -algebras. Transactions of the American Mathematical Society , {\mathbf 171}, 195--234.
  71. Brunetti, R., Guido, D. and Longo, R. (1993). Modular structure and duality in conformal quantum field theory. Communications in Mathematical Physics , {\mathbf 156}, 201--219.
  72. Brunetti, R., Guido, D. and Longo, R. (1995). Group cohomology, modular theory and space-time symmetries. Reviews in Mathematical Physics , {\mathbf 7} 57--71.
  73. Buchholz, D., Doplicher, S., Longo, R. and Roberts, J. E. (1993). Extensions of automorphisms and gauge symmetries. Communications in Mathematical Physics , {\mathbf 155}, 123--134.
  74. Buchholz, D., Mack, G. and Todorov, I. (1988). The current algebra on the circle as a germ of local field theories. Nuclear Physics B (Proc. Suppl.) , {\mathbf B5}, 20--56.
  75. Buchholz, D. and Schulz-Mirbach, H. (1990). Haag duality in conformal quantum field theoery, Reviews in Mathematical Physics , {\mathbf 2} 105--125.
  76. Camp, W., and Nicoara, R. (preprint 2007). Subfactors and Hadamard matrices. arXiv:0704.1128.
  77. Cappelli, A., Itzykson, C. and Zuber, J.-B. (1987). The  - -  classification of minimal and   conformal invariant theories. Communications in Mathematical Physics , {\mathbf 113}, 1--26.
  78. Carpi, S. (1998). Absence of subsystems for the Haag-Kastler net generated by the energy-momentum tensor in two-dimensional conformal field theory. Letters in Mathematical Physics , {\mathbf 45}, 259--267.
  79. Carpi, S. (2003). The Virasoro algebra and sectors with infinite statistical dimension. Annales Henri Poincar\'e , {\mathbf 4}, 601--611. math.OA/0203027.
  80. Carpi, S. (2004). On the representation theory of Virasoro nets. Communications in Mathematical Physics , {\mathbf 244}, 261--284. math.OA/0306425.
  81. Carpi, S. (2005). Intersecting Jones projections. International Journal of Mathematics , {\mathbf 16}, 687--691. math.OA/0412457.
  82. Carpi, S. and Conti, R. (2001). Classification of subsystems for local nets with trivial superselection structure. Communications in Mathematical Physics , {\mathbf 217}, 89--106.
  83. Carpi, S. and Conti, R. (2005). Classification of subsystems for graded-local nets with trivial superselection structure. Communications in Mathematical Physics . {\mathbf 253}, 423--449. math.OA/0312033.
  84. Carpi, S., Kawahigashi, Y. and Longo, R. (in press). Structure and classification of superconformal nets. Annales Henri Poincar\'e . arXiv:0705.3609.
  85. Carpi, S. and Weiner, M. (2005). On the uniqueness of diffeomorphism symmetry in Conformal Field Theory. Communications in Mathematical Physics , {\mathbf 258}, 203--221. math.OA/0407190.
  86. Ceccherini, T. (1996). Approximately inner and centrally free commuting squares of type   factors and their classification. Journal of Functioanl Analysis , {\mathbf 142}, 296--336.
  87. Chen, J. (1993). The Connes invariant   and cohomology of groups. Ph. D. dissertation at University of California, Berkeley.
  88. Choda, M. (1989). Index for factors generated by Jones' two sided sequence of projections. Pacific Journal of Mathematics , {\mathbf 139}, 1--16.
  89. Choda, M. (1991). Entropy for  -endomorphisms and relative entropy for subalgebras. Journal of Operator Theory , {\mathbf 25}, 125--140.
  90. Choda, M. (1992). Entropy for canonical shift. Transactions of the American Mathematical Society , {\mathbf 334}, 827--849.
  91. Choda, M. (1993). Duality for finite bipartite graphs (with applications to II  factors). Pacific Journal of Mathematics , {\mathbf 158}, 49--65.
  92. Choda, M. (1994). Square roots of the canonical shifts. Journal of Operator Theory , {\mathbf 31}, 145--163.
  93. Choda, M. (1994). Extension algebras via  -endomorphisms. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 105--128.
  94. Choda, M. and Hiai, F. (1991). Entropy for canonical shifts. II. Publications of the RIMS, Kyoto University , {\mathbf 27}, 461--489.
  95. Choda, M. and Kosaki, H. (1994). Strongly outer actions for an inclusion of factors. Journal of Functional Analysis , {\mathbf 122}, 315--332.
  96. Christensen, E. (1979). Subalgebras of a finite algebra. Mathematische Annalen , {\mathbf 243}, 17--29.
  97. Combes, F. (1968). Poids sur une  -alg\`ebre. {\em Journal de Math\'ematiques Pures et Appliqu\'ees}, {\mathbf 47}, 57--100.
  98. Connes, A. (1973). Une classification des facteurs de type III. Annales Scientifiques de l'\'Ecole Normale Sup\'erieure , {\mathbf 6}, 133--252.
  99. Connes, A. (1975). Outer conjugacy classes of automorphisms of factors. Annales Scientifiques de l'\'Ecole Normale Sup\'erieure , {\mathbf 8}, 383--419.
  100. Connes, A. (1975). Hyperfinite factors of type III-0 and Krieger's factors. Journal of Functional Analysis , {\mathbf 18}, 318--327.
  101. Connes, A. (1975). Sur la classification des facteurs de type II. {\em Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques}, {\mathbf 281}, 13--15.
  102. Connes, A. (1975). A factor not antiisomorphic to itself. Annals of Mathematics , {\mathbf 101}, 536--554.
  103. Connes, A. (1976). Classification of injective factors. Annals of Mathematics , {\mathbf 104}, 73--115.
  104. Connes, A. (1976). Outer conjugacy of automorphisms of factors. Symposia Mathematica , {\mathbf XX}, 149--160.
  105. Connes, A. (1976). On the classification of von Neumann algebras and their automorphisms. Symposia Mathematica , {\mathbf XX}, 435--478.
  106. Connes, A. (1977). Periodic automorphisms of the hyperfinite factor of type II . Acta Scientiarum Mathematicarum , {\mathbf 39}, 39--66.
  107. Connes, A. (1978). On the cohomology of operator algebras. Journal of Functional Analysis , {\mathbf 28}, 248--253.
  108. Connes, A. (1979). Sur la th\'eorie non commutative de l'integration. Springer Lecture Notes in Math. , {\mathbf 725}, 19--143.
  109. Connes, A. (1980).  -algebres et geom\`etrie diff\'erentielle. {\em Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques}, 559--604.
  110. Connes, A. (1980). Spatial theory of von Neumann algebras. Journal of Functional Analysis , {\mathbf 35} (1980), 153--164.
  111. Connes, A. (1981). An analogue of the Thom isomorphism for crossed products of a  -algebra by an action of  . Advances in Mathematics , {\mathbf 39}, 311--355.
  112. Connes, A. (1982). Foliations and Operator Algebras. {\em Proceedings of Symposia in Pure Mathematics. ed. R. V. Kadison}, {\mathbf 38}, 521--628.
  113. Connes, A. (1982). Classification des facteurs. Proceedings of the Symposia in Pure Mathematics (II) , {\mathbf 38}, 43--109.
  114. Connes, A. (1985). Non-commutative differential geometry I--II. Publication Math\'ematiques IHES , {\mathbf 62}, 41--144.
  115. Connes, A. (1985). Factors of type III-1, property   and closure of inner automorphisms. Journal of Operator Theory , {\mathbf 14}, 189--211.
  116. Connes, A. (1985). Non Commutative Differential Geometry, Chapter II: De Rham homology and non commutative algebra. Publication Math\'ematiques IHES , {\mathbf 62}, 257--360.
  117. Connes, A. (1994). Noncommutative geometry. Academic Press .
  118. Connes, A. and Evans, D. E. (1989). Embeddings of  -current algebras in non-commutative algebras of classical statistical mechanics. {\em Communications in Mathematical Physics}, {\mathbf 121}, 507--525.
  119. Connes, A. and Higson, N. (1990). D\'eformations, morphismes asymptotiques et  -th\'eorie bivariante. {\em Comptes Rendus de l' Academie des Sciences, S\'erie I, Math\'ematiques}, {\mathbf 311}, 101--106.
  120. Connes, A. and Karoubi, M. (1988). Caractere multiplicatif d'un module de Fredholm.  -theory , {\mathbf 2} 431--463.
  121. Connes, A. and Krieger, W. (1977). Measure space automorphism groups, the normalizer of their full groups, and approximate finiteness. Journal of Functional Analysis , {\mathbf 24}, 336--352.
  122. Connes, A. and Rieffel, M. (1985). Yang-Mills for non-commutative tori. Contemporary Mathematics , {\mathbf 62}, 237--265.
  123. Connes, A. and Skandalis, G. (1984). The longitudinal index theorem for foliations. Publications of the RIMS, Kyoto University , {\mathbf 20}, 1139--1183.
  124. Connes, A. and St\"ormer, E. (1975). Entropy for automorphisms of   von Neumann algebras. Acta Mathematica , {\mathbf 134}, 289--306.
  125. Connes, A. and Takesaki, M. (1977). The flow of weights on factors of type III. Tohoku Mathematical Journal , {\mathbf 29}, 73--555.
  126. Conti, R., Doplicher, S., and Roberts, J. E. (2001). Superselection theory for subsystems. Communications in Mathematical Physics , {\mathbf 218}, 263--281.
  127. Conti, R. and Pinzari, C. (1996). Remarks on the index of endomorphisms of Cuntz algebras. Journal of Functional Analysis , {\mathbf 142}, 369--405.
  128. Coquereaux, R. (2005) The   Ocneanu quantum groupoid. in Algebraic structures and their representations , Contemporary Mathematics , {\mathbf 376}, 227--247. hep-th/0311151.
  129. Coquereaux, R. and Schieber, G. (2002). Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries. Journal of Geometry and Physics , {\mathbf 42}, 216--258.
  130. Coquereaux, R. and Schieber, G. (2003). Determination of quantum symmetries for higher ADE systems from the modular T matrix. Journal of Mathematical Physics , {\mathbf 44}, 3809--3837. hep-th/0203242. \ bibitem{Cn} Cuntz, J. (1977). Simple  -algebras generated by isometries. Communications in Mathematical Physics , {\mathbf 57}, 173--185.
  131. Cuntz, J. (1981).  -theory for certain  -algebras. Annals of Mathematics , {\mathbf 113}, 181--197.
  132. Cuntz, J. (1984).  -theory and  -algebras. Lecture Notes in Mathematics, Springer-Verlag , {\mathbf 1046}.
  133. Cuntz, J. (1981). A class of  -algebras and topological Markov chains II. Reducible Markov chains and the   functor for  -algebras. Inventiones Mathematica , {\mathbf 63}, 25--40.
  134. Cuntz, J. and Krieger, W. (1980). A class of  -algebras and topological Markov chains. Inventiones Mathematicae , {\mathbf 56}, 251--268.
  135. Cvetkovi\'c, D., Doob, M. and Gutman, I. (1982). On graphs whose spectral radius does not exceed  . Ars Combinatoria , {\mathbf 14}, 225--239.
  136. D'Antoni, C., Fredenhagen, K. and K\"oster, S. (preprint 2003). Implementation of conformal covariance by diffeomorphism symmetry. math-ph/0312017.
  137. D'Antoni, C., Longo, R. and Radulescu, F. (2001). Conformal nets, maximal temperature and models from free probability. Journal of Operator Theory , {\mathbf 45}, 195--208.
  138. Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M. (1988). Exactly solvable SOS models II: Proof of the star-triangle relation and combinatorial identities. Advanced Studies in Pure Mathematics , {\mathbf 16}, 17--122.
  139. Date, E., Jimbo, M., Miwa, T. and Okado, M. (1987). Solvable lattice models. Theta functions --- Bowdoin 1987, Part 1 , Proceedings of Symposia in Pure Mathematics Vol. 49, American Mathematical Society, Providence, R.I., pp. 295--332.
  140. David, M. C. (1996). Paragroupe d'Adrian Ocneanu et alg\`ebre de Kac. Pacific Journal of Mathematics , {\mathbf 172}, 331--363.
  141. Degiovanni, P. (1990).   conformal field theories. Communications in Mathematical Physics , {\mathbf 127}, 71--99.
  142. Degiovanni, P. (1992). Moore and Seiberg's equations and 3D toplogical field theory. {\mathbf 145}, 459--505.
  143. Di Francesco, P. (1992). Integrable lattice models, graphs, and modular invariant conformal field theories. International Journal of Modern Physics A , {\mathbf 7}, 407--500.
  144. Di Francesco, P., Mathieu, P. and S\'en\'echal, D. (1996). Conformal Field Theory. Springer-Verlag, New York.
  145. Di Francesco, P., Saleur, H. and Zuber, J.-B. (1987). Modular invariance in non-minimal two-dimensional conformal field theories. Nuclear Physics , {\mathbf B285}, 454--480.
  146. Di Francesco, P. and Zuber, J.-B. (1990).   lattice integrable models associated with graphs. Nuclear Physics B , {\mathbf 338}, 602--646.
  147. Di Francesco, P. and Zuber, J.-B. (1990).   lattice integrable models and modular invariance. in Recent Developments in Conformal Field Theories, Trieste, 1989 , World Scientific, 179--215.
  148. Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1990). Quasi Hopf algebras, group cohomology and orbifold models. Nuclear Physics B(Proc. Suppl.) , {\mathbf 18}, 60--72.
  149. Dijkgraaf, R., Pasquier, V. and Roche, Ph. (1991). Quasi-quantum groups related to orbifold models. {\em Proceedings of the International Colloquium on Modern Quantum Field Theory}, World Scientific, Singapore, 375--383.
  150. Dijkgraaf, R., Vafa, C., Verlinde, E. and Verlinde, H. (1989). The operator algebra of orbifold models. Communications in Mathematical Physics , {\mathbf 123}, 485--526.
  151. Dijkgraaf, R. and Witten, E. (1990). Topological gauge theories and group cohomology. Communications in Mathematical Physics , {\mathbf 129}, 393--429.
  152. Dixmier, J. (1964). Les  -algebras et leurs repr\'esentations. Gauthier-Villars .
  153. Dixmier, J. (1967). On some  -algebras considered by Glimm. Journal of Functional Analysis , {\mathbf 1}, 182--203.
  154. Dixmier, J. (1969). {\em Les alg\`ebres d'op\'erateurs dans l'espace Hilbertien. (Alg\`ebres de von Neumann.)} 2nd ed. Gauthier Villars, Paris.
  155. Dixmier, J. (1981). Von Neumann Algebras. North-Holland .
  156. Dixmier, J. and C. Lance (1969). Deux nouveaux facteurs de type II. Inventiones Mathematicae , {\mathbf 7}, 226--234.
  157. Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1985). Strings on orbifolds. Nuclear Physics B , {\mathbf 261}, 678--686.
  158. Dixon, L., Harvey, J. A., Vafa, C. and Witten, E. (1986). Strings on orbifolds. Nuclear Physics B , {\mathbf 274}, 285--314.
  159. Dong, C. and Xu, F. (2006). Conformal nets associated with lattices and their orbifolds. Advances in Mathematics , {\mathbf 206}, 279--306. math.OA/0411499.
  160. Doplicher, S., Haag, R. and Roberts, J. E. (1969). Fields, observables and gauge transformations II. Communications in Mathematical Physics , {\mathbf 15}, 173--200.
  161. Doplicher, S., Haag, R. and Roberts, J. E. (1971, 74). Local obsevables and particle statistics, I,II. Communications in Mathematical Physics , {\mathbf 23}, 199--230 and {\mathbf 35}, 49--85.
  162. Doplicher, S. and Longo, R. (1984). Standard and split inclusions of von Neumann algebras. Inventiones Mathematicae , {\mathbf 75}, 493--536. bibitem{DP} Doplicher, S. and , Piacitelli, G. (preprint 2002). Any compact group is a gauge group. hep-th/0204230.
  163. Doplicher, S., Pinzari, C. and Roberts, J. E. (2001). An algebraic duality theory for multiplicative unitaries. International Journal of Mathematics , {\mathbf 12}, 415--459.
  164. Doplicher, S. and Roberts, J. E. (1989). Endomorphisms of Failed to parse (unknown function "\sp"): {\displaystyle C\sp *} -algebras, cross products and duality for compact groups. Annals of Mathematics , {\mathbf 130}, 75--119.
  165. Doplicher, S. and Roberts, J. E. (1989). A new duality theory for compact groups. Inventiones Mathematica , {\mathbf 98}, 157--218.
  166. Drinfel d, V. G. (1986). Quantum groups. Proc. ICM-86, Berkeley , 798--820.
  167. Dunford, N. and Schwartz, J. T. (1958). Linear Operators Volume I. Interscience.
  168. Durhuus, B., Jakobsen, H. P. and Nest, R. (1993). Topological quantum field theories from generalized  -symbols. Reviews in Mathematical Physics , {\mathbf 5}, 1--67.
  169. Elliott, G. A. (1976). On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. Journal of Algebra , {\mathbf 38}, 29--44.
  170. Enock, M. (1998). Inclusions irr\'educibles de facteurs et unitaires multiplicatifs, II. Journal of Functional Analysis , {\mathbf 154}, 67--109.
  171. Enock, M. (1999). Sous-facteurs interm\'ediaires et groupes quantiques mesur\'es. Journal of Operator Theory , {\mathbf 42}, 305--330.
  172. Enock, M. (2000). Inclusions of von Neumann algebras and quantum groupoids, II. Journal of Functional Analysis , {\mathbf 178}, 156--225.
  173. Enock, M. and Nest, R. (1996). Irreducible inclusions of factors multiplicative unitaries, and Kac algebras. Journal of Functional Analysis , {\mathbf 137}, 466--543.
  174. Enock, M. and Vallin, J.-M. (2000). Inclusions of von Neumann algebras and quantum groupoids. Journal of Functional Analysis , {\mathbf 172}, 249--300.
  175. Erlijman, J. (1998). New braided subfactors from braid group representations. Transactions of the American Mathematical Society , {\mathbf 350}, 185--211.
  176. Erlijman, J. (2000). Two-sided braid subfactors and asymptotic inclusions. Pacific Journal of Mathematics , {\mathbf 193}, 57--78.
  177. Erlijman, J. (2001). Multi-sided braid subfactors. Canadian Journal of Mathematics , {\mathbf 53}, 546--564.
  178. Evans, D.E. (1984). The  -algebras of topological Markov chains. Tokyo Metropolitan University Lecture Notes .
  179. Evans, D. E. (1985). The  -algebras of the two-dimensional Ising model. Springer Lecture Notes in Mathematics, {\mathbf 1136}, 162--176.
  180. Evans, D. E. (1985). Quasi-product states on  -algebras. {\em Operator algebras and their connections with topology and ergodic theory}, Springer Lecture Notes in Mathematics, {\mathbf 1132}, 129--151.
  181. Evans, D. E. (1990).  -algebraic methods in statistical mechanics and field theory. International Journal of Modern Physics B , {\mathbf 4}, 1069--1118.
  182. Evans, D. E. (2002). Fusion rules of modular invariants. Reviews in Mathematical Physics , {\mathbf 14}, 709--731. math.OA/0204278
  183. Evans, D. E. (preprint 2002). Critical phenomena, modular invariants and operator algebras. math.OA/0204281.
  184. Evans, D. E. and Gould, J. D. (1989). Dimension groups, embeddings and presentations of AF algebras associated to solvable lattice models. Modern Physics Letters A , {\mathbf 20}, 1883--1890.
  185. Evans, D. E. and Gould, J. D. (1994). Dimension groups and embeddings of graph algebras. International Journal of Mathematics , {\mathbf 5}, 291--327.
  186. Evans, D. E. and Gould, J. D. (1994). Presentations of AF algebras associated to  -graphs. Publications of the RIMS, Kyoto University , {\mathbf 30}, 767--798.
  187. Evans, D. E. and Kawahigashi, Y. (1993). Subfactors and conformal field theory. in "Quantum and non-commutative analysis", 341--369, Kluwer Academic.
  188. Evans, D. E. and Kawahigashi, Y. (1994). Orbifold subfactors from Hecke algebras. Communications in Mathematical Physics , {\mathbf 165}, 445--484.
  189. Evans, D. E. and Kawahigashi, Y. (1994). The   commuting squares produce   as principal graph. Publications of the RIMS, Kyoto University , {\mathbf 30}, 151--166.
  190. Evans, D. E. and Kawahigashi, Y. (1995). On Ocneanu's theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles. International Journal of Mathematics , {\mathbf 6}, 205--228.
  191. Evans, D. E. and Kawahigashi, Y. (1995). From subfactors to  -dimensional topological quantum field theories and back --- a detailed account of Ocneanu's theory ---. International Journal of Mathematics , {\mathbf 6}, 537--558.
  192. Evans, D. E. and Kawahigashi, Y. (1998). Orbifold subfactors from Hecke algebras II ---Quantum doubles and braiding---. Communications in Mathematical Physics , {\mathbf 196}, 331--361.
  193. Evans, D. E. and Kawahigashi, Y. (1998). Quantum symmetries on operator algebras. Oxford University Press .
  194. Evans, D. E. and Pinto, P. R. (2003). Subfactor realisation of modular invariants. Communications in Mathematical Physics , {\mathbf 237}, 309--363. math.OA/0309174.
  195. Evans, D. E. and Pinto, P. R. (preprint 2003). Modular invariants and their fusion rules. math.OA/0309175
  196. Evans, D. E. and Pinto, P. R. (preprint 2004). Modular invariants and the double of the Haagerup subfactor.
  197. Fack, T. and Mar\`echal, O (1979). Sur la classification des sym\`etries des  -alg\'ebres UHF. Canadian Journal of Mathematics , {\mathbf 31}, 496--523.
  198. Fack, T. and Mar\`echal, O. (1981). Sur la classification des automorphisms p\`eriodiques des  -alg\'ebres UHF. Journal of Functional Analysis , {\mathbf 40}, 267--301.
  199. Felder, F., Fr\"ohlich, J. and Keller, G. (1990). On the structure of unitary conformal field theory. II. Representation-theoretic approach. Communications in Mathematical Physics , {\mathbf 130}, 1--49.
  200. Fendley, P. (1989). New exactly solvable orbifold models. Journal of Physics A , {\mathbf 22}, 4633--4642.
  201. Fendley, P. and Ginsparg, P. (1989). Non-critical orbifolds. Nuclear Physics B , {\mathbf 324}, 549--580.
  202. Fenn, R. and Rourke, C. (1979). On Kirby's calculus of links. Topology , {\mathbf 18}, 1--15.
  203. Fidaleo, F. and Isola, T. (preprint 1996). The canonical endomorphism for infinite index inclusions.
  204. Fredenhagen, K. (1994). Superselection sectors with infinite statistical dimension. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 242--258.
  205. Fredenhagen, K. and J\"or\ss, M. (1996). Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansion. Communications in Mathematical Physics , {\mathbf 176} (1996) 541--554.
  206. Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1989). Superselection sectors with braid group statistics and exchange algebras. Communications in Mathematical Physics , {\mathbf 125}, 201--226.
  207. Fredenhagen, K., Rehren, K.-H. and Schroer, B. (1992). Superselection sectors with braid group statistics and exchange algebras II. Reviews in Mathematical Physics (special issue), 113--157.
  208. Freyd, P., Yetter, D.; Hoste, J.; Lickorish, W., Millet, K.; and Ocneanu, A. (1985). A new polynomial invariant of knots and links. Bulletin of the American Mathematical Society , {\mathbf 12}, 239--246.
  209. Friedan, D., Qui, Z. and Shenker, S. (1984). Conformal invariance, unitarity and critical exponents in two dimensions. Physical Review Letters , {\mathbf 52}, 1575--1578.
  210. Fr\"ohlich, J. (1987). Statistics of fields, the Yang--Baxter equation and the theroy of knots and links. Proceedings of Carg\`ese, ed. G.'t Hooft et al .
  211. Fr\"ohlich, J. (1988). The Statistics of Fields, the Yang--Baxter Equation, and the Theory of Knots and Links. In Non-Pert. Quantum Field Theory, G. 'tHooft et al. (ed.), Plenum. (Cargese Lectures, 1987).
  212. Fr\"ohlich, J. and Gabbiani, F. (1990). Braid statistics in local quantum theory. Reviews in Mathematical Physics , {\mathbf 2}, 251--353.
  213. Fr\"ohlich, J. and Kerler, T. (1993). Quantum groups, quantum categories and quantum field theory. Lecture Notes in Mathematics, {\mathbf 1542}, Springer.
  214. Fr\"ohlich, J. and King, C. (1989). The Chern--Simons theory and knot polynomials. Communications in Mathematical Physics , {\mathbf 126}, 167--199.
  215. Fr\"ohlich, J. and King, C. (1989). Two-dimensional conformal field theory and three-dimensional topology. International Journal of Modern Physics A , {\mathbf 4}, 5321--5399.
  216. Fr\"ohlich, J. and Marchetti, P.-A. (1988). Quantum field theory of anyons. Letters in Mathematical Physics , {\mathbf 16}, 347--358.
  217. Fr\"ohlich, J. and Marchetti, P.-A. (1989). Quantum field theories of vortices and anyons. Communications in Mathematical Physics , {\mathbf 121}, 177--223.
  218. Fuchs, J. (1992). Affine Lie algebras and quantum groups. Cambridge University Press .
  219. Fuchs, J., Runkel, I. and Schweigert, C. (2002). TFT construction of RCFT correlators I: Partition functions. Nuclear Physics B , {\mathbf 646}, 353--497. hep-th/0204148.
  220. Fuchs, J. and Schweigert, C. (2000). Solitonic sectors, alpha-induction and symmetry breaking boundaries. Physics Letters , {\mathbf B490}, 163--172. hep-th/0006181.
  221. Fuchs, J. and Schweigert, C. (preprint 2001). Category theory for conformal boundary conditions. math.CT/0106050.
  222. Gabbiani, F. and Fr\"ohlich, J. (1993). Operator algebras and conformal field theory. Communications in Mathematical Physics , {\mathbf 155}, 569--640.
  223. Gannon, T. (1993). WZW commutants, lattices and level -- one partition functions. Nuclear Physics B , {\mathbf 396}, 708--736.
  224. Gannon, T. (1994). The classification of affine   modular invariant partition functions. Communications in Mathematical Physics , {\mathbf 161}, 233--264.
  225. Gannon, T. and Ho-Kim, Q. (1994). The rank-four heterotic modular invariant partition functions. Nuclear Physics B , {\mathbf 425}, 319--342.
  226. Gantmacher, F. R. (1960). The theory of matrices. Vol. 2. Chelsea.
  227. Ge, L. and Popa, S. (1998). On some decomposition properties for factors of type II . Duke Mathematical Journal , {\mathbf 94}, 79--101.
  228. Gepner, D. and Witten, E. (1986). String theory on group manifolds. Nuclear Physics B , {\mathbf 278}, 493--549.
  229. Gnerre, S. (2000). Free compositions of paragroups. Journal of Functional Analysis , {\mathbf 175}, 251--278.
  230. Goddard, P., Kent, A. and Olive, D. (1986). Unitary representations of the Virasoro and super-Virasoro algebras. Communications in Mathematical Physics , {\mathbf 103}, 105--119.
  231. Goddard, P., Nahm, W. and Olive, D. (1985). Symmetric spaces, Sugawara's energy momentum tensor in two dimensions and free Fermions. Physics Letters , {\mathbf 160B}, 111--116.
  232. Goddard, P. and Olive, D. (1988). Kac--Moody and Virasoro algebras. Advanced Series in Mathematical Physics , {\mathbf 3}, World Scientific.
  233. Goldman, M. (1960). On subfactors of type II . The Michigan Mathematical Journal , {\mathbf 7}, 167--172.
  234. Goldschmidt, D. M. and Jones, V. F. R. (1989) Metaplectic link invariants. Geometriae Dedicata , {\mathbf 31}, 165--191.
  235. Goodman, F., de la Harpe, P. and Jones, V. F. R. (1989). Coxeter graphs and towers of algebras. MSRI Publications (Springer) , {\mathbf 14}.
  236. Goodman, F. and Wenzl, H. (1990). Littlewood Richardson coefficients for Hecke algebras at roots of unity. Advances in Mathematics , {\mathbf 82}, 244--265.
  237. Goto, S. (1994). Orbifold construction for non-AFD subfactors. International Journal of Mathematics , {\mathbf 5}, 725--746.
  238. Goto, S. (1995). Symmetric flat connections, triviality of Loi's invariant, and orbifold subfactors. Publications of the RIMS, Kyoto University , {\mathbf 31}, 609--624.
  239. Goto, S. (1996). Commutativity of automorphisms of subfactors modulo inner automorphisms. Proceedings of the American Mathematical Society , {\mathbf 124}, 3391--3398.
  240. Goto, S. (2000). Quantum double construction for subfactors arising from periodic commuting squares. Journal of the Mathematical Society of Japan , {\mathbf 52}, 187--198.
  241. Greenleaf, F. P. (1969). Invariant means on topological groups and their applications , van Nostrand, New York.
  242. Grossman, P. (preprint 2006). Forked Temperley-Lieb algebras and intermediate subfactors. math.OA/0607335.
  243. Grossman, P., and Izumi, M. (2008). Classification of noncommuting quadrilaterals of factors. International Journal of Mathematics , {\mathbf 19}, 557--643. arXiv:0704.1121.
  244. Grossman, P. and Jones, V. F. R. (2007). Intermediate subfactors with no extra structure. Journal of the American Mathematical Society , {\mathbf 20}, 219--265. math.OA/0412423.
  245. Guido, D. and Longo, R. (1992). Relativistic invariance and charge conjugation in quantum field theory. Communications in Mathematical Physics , {\mathbf 148}, 521---551.
  246. Guido, D. and Longo, R. (1995). An algebraic spin and statistics theorem. Communications in Mathematical Physics , {\mathbf 172}, 517--533.
  247. Guido, D. and Longo, R. (1996). The conformal spin and statistics theorem. Communications in Mathematical Physics , {\mathbf 181}, 11--35.
  248. Guido, D. and Longo, R. (in press). A converse Hawking-Unruh effect and dS /CFT correspondance. Annales Henri Poincar\'e . gr-qc/0212025.
  249. Guido, D., Longo, R. and Wiesbrock, H.-W. (1998). Extensions of conformal nets and superselection structures. Communications in Mathematical Physics , {\mathbf 192}, 217--244.
  250. Guido, D., Longo, R., Roberts, J. E. and Verch, R. (2001). Charged sectors, spin and statistics in quantum field theory on curved spacetimes. Reviews in Mathematical Physics , {\mathbf 13}, 125--198.
  251. Guionnet, A., Jones, V. F. R., Shlyakhtenko, D. (preprint 2007). Random matrices, free probability, planar algebras and subfactors. arXiv:0712.2904.
  252. Haag, R. (1996). Local Quantum Physics. Springer-Verlag, Berlin-Heidelberg-New York.
  253. Haag, R and Kastler, T. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics , {\mathbf 5}, 848--861.
  254. Haagerup, U. (1975). Normal weights on  -algebras. Journal of Functional Analysis , {\mathbf 19}, 302--317.
  255. Haagerup, U. (1983). All nuclear  -algebras are amenable. Inventiones Mathematica , {\mathbf 74}, 305--319.
  256. Haagerup, U. (1987). Connes' bicentralizer problem and the uniqueness of the injective factor of type  . Acta Mathematica , {\mathbf 158}, 95--148.
  257. Haagerup, U. (preprint 1991). Quasi-traces on exact  --algebras are traces.
  258. Haagerup, U. (1994). Principal graphs of subfactors in the index range  . in Subfactors -Proceedings of the Taniguchi Symposium, Katata - , (ed. H. Araki, et al.), World Scientific, 1--38.
  259. Haagerup, U. and St\"ormer, E. (1990). Equivalences of normal states on von Neumann algebras and the flow of weights. Advances in Mathematics {\mathbf 83}, 180--262.
  260. Haagerup, U. and St\"ormer, E. (1990). Pointwise inner automorphisms of von Neumann algebras (with an appendix by Sutherland, C. E.). Journal of Functional Analysis , {\mathbf 92}, 177--201.
  261. Haagerup, U. and Winsl\"ow, C. (1998). The Effros--Mar\'echal topology in the space of von Neumann algebras. American Journal of Mathematics , {\mathbf 120}, 567--617.
  262. Haagerup, U. and Winsl\"ow, C. (2000). The Effros--Mar\'echal topology in the space of von Neumann algebras, II. Journal of Functional Analysis , {\mathbf 171}, 401--431.
  263. Hamachi, T. and Kosaki, H. (1988). Index and flow of weights of factors of type III. Proceedings of the Japan Academy , {\mathbf 64A}, 11--13.
  264. Hamachi, T. and Kosaki, H. (1988). Inclusions of type III factors constructed from ergodic flows. Proceedings of the Japan Academy , {\mathbf 64A}, 195--197.
  265. Hamachi, T. and Kosaki, H. (1993). Orbital factor map. Ergodic Theory and Dynamical Systems , {\mathbf 13}, 515--532.
  266. de la Harpe, P. (1979). Moyennabilit\'e du groupe unitaire et propri\'et\'e P de Schwartz des alg\`ebres de von Neumann. {\em Alg\`ebres d'op\'erateurs (S\'eminaire, Les Plans-sur-Bex, Suisse 1978) (editor, P. de la Harpe), Lecture Notes in Mathematics, Springer-Verlag}, {\mathbf 725}, 220--227.
  267. de la Harpe, P. and Wenzl, H. (1987). Operations sur les rayons spectraux de matrices symetriques entieres positives. {\em Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques}, {\mathbf 305}, 733--736.
  268. Havet, J.-F. (1976). Esp\'erance conditionnelles permutables \`a un group d'automorphismes sur une alg\`ebre de von Neumann. Comptes Rendus de l'Academie des Sciences, S\'erie I, Math\'ematiques , {\mathbf 282} (1976), 1095--1098..
  269. Havet, J.-F. (1990). Esp\'erance conditionnelle minimale. Journal of Operator Theory , {\mathbf 24}, 33--35.
  270. Hayashi, T. (1993). Quantum group symmetry of partition functions of IRF models and its application to Jones' index theory. Communications in Mathematical Physics , {\mathbf 157}, 331--345.
  271. Hayashi, T. (1996). Compact quantum groups of face type. Publications of the RIMS, Kyoto University , {\mathbf 32}, 351--369.
  272. Hayashi, T. (1998). Faes algebras I. A generalization of quantum group theory. Journal of the Mathematical Society of Japan , {\mathbf 50}, 293--315.
  273. Hayashi, T. (1999). Face algebras and unitarity of SU -TQFT. Communications in Mathematical Physics , {\mathbf 203}, 211-247.
  274. Hayashi, T. (1999). Galois quantum groups of II -subfactors. T\^ohoku Mathematical Journal , {\mathbf 51}, 365--389.
  275. Hayashi, T. (2000). Harmonic function spaces of probability measures on fusion algebras. Publications of the RIMS, Kyoto University , {\mathbf 36}, 231--252.
  276. Hayashi, T. and Yamagami, S. (2000). Amenable tensor categories and their realizations as AFD bimodules. Journal of Functional Analysis , {\mathbf 172}, 19--75.
  277. Herman, R. H. and Ocneanu, A. (1984). Stability for integer actions on UHF  -algebras. Journal of Functional Analysis , {\mathbf 59}, 132--144.
  278. Hiai, F. (1988). Minimizing indices of conditional expectations onto a subfactor. Publications of the RIMS, Kyoto University , {\mathbf 24}, 673--678.
  279. Hiai, F. (1990). Minimum index for subfactors and entropy I. Journal of Operator Theory , {\mathbf 24}, 301--336.
  280. Hiai, F. (1991). Minimum index for subfactors and entropy, II. Journal of the Mathematical Society of Japan , {\mathbf 43}, 347--380.
  281. Hiai, F. (1994). Entropy and growth for derived towers of subfactors. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 206--232.
  282. Hiai, F. (1995). Entropy for canonical shifts and strong amenability. International Journal of Mathematics , {\mathbf 6}, 381--396.
  283. Hiai, F. (1997). Standard invariants for crossed products inclusions of factors. Pacific Journal of Mathematics , {\mathbf 177}, 237--267.
  284. Hiai, F. and Izumi, M. (1998). Amenability and strong amenability for fusion algebras with applications to subfactor theory. International Journal of Mathematics , {\mathbf 9}, 669--722.
  285. Hislop, P. and Longo, R. (1982). Modular structure of the local algebras associated with the free massless scalar field theory. Communications in Mathematical Physics , {\mathbf 84} (1982) 71--85.
  286. Hofman, A. J. (1972). On limit points of spectral radii of non-negative symmetric integral matrices. Lecture Notes in Mathematics , {\mathbf 303}, Springer Verlag, 165--172.
  287. Ikeda, K. (1998). Numerical evidence for flatness of Haagerup's connections. Journal of the Mathematical Sciences, University of Tokyo , {\mathbf 5}, 257--272.
  288. Ishikawa, H. and Tani, T. (preprint 2002). Novel construction of boundary states in coset conformal field theories. hep-th/0207177.
  289. Izumi, M. (1991). Application of fusion rules to classification of subfactors. Publications of the RIMS, Kyoto University , {\mathbf 27}, 953--994.
  290. Izumi, M. (1992). Goldman's type theorem for index 3. Publications of the RIMS, Kyoto University , {\mathbf 28}, 833--843.
  291. Izumi, M. (1993). On type III and type II principal graphs for subfactors. Mathematica Scandinavica , {\mathbf 73}, 307--319.
  292. Izumi, M. (1993). Subalgebras of infinite  -algebras with finite Watatani indices I. Cuntz algebras. Communications in Mathematical Physics , {\mathbf 155}, 157--182.
  293. Izumi, M. (1994). On flatness of the Coxeter graph  . Pacific Journal of Mathematics , {\mathbf 166}, 305--327.
  294. Izumi, M. (1994). Canonical extension of endomorphisms of factors. in Subfactors --- Proceedings of the Taniguchi Symposium, Katata --- , (ed. H. Araki, et al.), World Scientific, 274--293.
  295. Izumi, M. (1998). Subalgebras of infinite  -algebras with finite Watatani indices II: Cuntz-Krieger algebras. Duke Mathematical Journal , {\mathbf 91}, 409--461.
  296. Izumi, M. (1999). Actions of compact quantum groups on operator algebras. in XIIth International Congress of Mathematical Physics , International Press, 249--253.
  297. Izumi, M. (2000). The structure of sectors associated with Longo-Rehren inclusions I. General theory. Communications in Mathematical Physics , {\mathbf 213}, 127--179.
  298. Izumi, M. (2001). The structure of sectors associated with Longo-Rehren inclusions II. Examples. Reviews in Mathematical Physics , {\mathbf 13}, 603--674.
  299. Izumi, M. (2002). Non-commutative Markov operators arising from subfactors. Advances in Mathematics , {\mathbf 169}, 1--57.
  300. Izumi, M. (2003). Canonical extension of endomorphisms of type III factors. American Journal of Mathematics , {\mathbf 125}, 1--56.
  301. Izumi, M. (2002). Inclusions of simple  -algebras. Journal f\"ur die Reine und Angewandte Mathematik , {\mathbf 547}, 97--138.
  302. Izumi, M. (2002). Characterization of isomorphic group-subgroup subfactors. International Mathematics Research Notices , 1791--1803.
  303. Izumi, M. and Kawahigashi, Y. (1993). Classification of subfactors with the principal graph  . Journal of Functional Analysis , {\mathbf 112}, 257--286.
  304. Izumi, M. and Kosaki, H. (1996). Finite dimensional Kac algebras arising from certain group actions on a factor. International Mathematics Research Notices , 357--370.
  305. Izumi, M. and Kosaki, H. (2002). Kac algebras arising from composition of subfactors: General theory and classification. Memoirs of the American Mathematical Society , {\mathbf 158}, no. 750.
  306. Izumi, M. and Kosaki, H. (2002). On a subfactor analogue of the second cohomology. Reviews in Mathematical Physics , {\mathbf 14}, 733--757.
  307. Izumi, M., Longo, R. and Popa, S. (1998). A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. Journal of Functional Analysis , {\mathbf 155}, 25--63.
  308. Jimbo, M. (1986). A  -difference analogue of   and the Yang-Baxter equation. Letters in Mathematical Physics , {\mathbf 102}, 537--567.
  309. Jimbo, M. (1986). A  -analogue of  , Hecke algebra and the Yang-Baxter equation. Letters in Mathematical Physics , {\mathbf 11}, 247--252.
  310. Jimbo, M., T, Miwa and Okado, M. (1987). Solvable lattice models whose states are dominant integral weights of  . Letters in Mathematical Physics , {\mathbf 14}, 123--131.
  311. Jimbo, M., T, Miwa and Okado, M. (1988). Solvable lattice models related to the vector representation of classical simple Lie algebras. Communications in Mathematical Physics , {\mathbf 116}, 507--525.
  312. Jones, V. F. R. (1980). A factor anti-isomorphic to itself but without involutory anti-automorphisms. Mathematica Scandinavica , {\mathbf 46}, 103--117.
  313. Jones, V. F. R. (1980). Actions of finite groups on the hyperfinite type II  factor. Memoirs of the American Mathematical Society , {\mathbf 237}.
  314. Jones, V. F. R. (1983). Index for subfactors. Inventiones Mathematicae , {\mathbf 72}, 1--25.
  315. Jones, V. F. R. (1985). A polynomial invariant for knots via von Neumann algebras. Bulletin of the American Mathematical Society , {\mathbf 12}, 103--112.
  316. Jones, V. F. R. (1986). A new knot polynomial and von Neumann algebras. Notices of the American Mathematical Society , {\mathbf 33}, 219--225.
  317. Jones, V. F. R. (1986). Braid groups, Hecke algebras and type II  factors. (1986). in {\em Geometric Methods in Operator Algebras}, ed. H. Araki and E. G. Effros., Longman, 242--273.
  318. Jones, V. F. R. (1987). Hecke algebra representations of braid groups and link polynomials. Annals of Mathematics , {\mathbf 126}, 335--388.
  319. Jones, V. F. R. (1989). On a certain value of the Kauffman polynomial. Communications in Mathematical Physics , {\mathbf 125}, 459--467.
  320. Jones, V. F. R. (1989). On knot invariants related to some statistical mechanical models. Pacific Journal of Mathematics , {\mathbf 137}, 311--334.
  321. Jones, V. F. R. (1990). Knots, braids and statistical mechanics. in Advances in differential geometry and topology , 149--184.
  322. Jones, V. F. R. (1990). Baxterization. International Journal of Modern Physics B , {\mathbf 4}, 701--713.
  323. Jones, V. F. R. (1990). Notes on subfactors and statistical mechanics. International Journal of Modern Physics A , {\mathbf 5}, 441--460.
  324. Jones, V. F. R. (1991). von Neumann algebras in mathematics and physics. Proceedings of ICM-90 , 121--138, Springer.
  325. Jones, V. F. R. (1991). Subfactors and knots. CBMS Regional Conference Series in Mathematics, {\mathbf 80}.
  326. Jones, V. F. R. (1992). From quantum theory to knot theory and back: a von Neumann algebra excursion. in American Mathematical Society centennial publications, Vol. II , 321--336.
  327. Jones, V. F. R. (1994). The Potts model and the symmetric group. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 259--267.
  328. Jones, V. F. R. (1994). On a family of almost commuting endomorphisms. Journal of Functional Analysis , {\mathbf 119}, 84--90.
  329. Jones, V. F. R. (1995). Fusion en alg\`ebres de von Neumann et groupes de lacets (d'apr\`es A. Wassermann). Seminaire Bourbaki , {\mathbf 800}, 1--20.
  330. Jones, V. F. R. (in press). Planar algebras I. New Zealand Journal of Mathematics . math.QA/9909027.
  331. Jones, V. F. R. (2000). Ten problems. in Mathematics: frontiers and perspectives , Amer. Math. Soc., 79--91.
  332. Jones, V. F. R. (2000). The planar algebras of a bipartite graph. in Knots in Hellas '98 , World Scientific, 94--117.
  333. Jones, V. F. R. (2001). The annular structure of subfactors. in Essays on geometry and related topics , Monographies de L'Enseignement Mathe\'matique, {\mathbf 38}, 401--463.
  334. Jones, V. F. R. (preprint 2003). In and around the origin of quantum groups. math.OA/0309199.
  335. Jones, V. F. R. (preprint 2003). Quadratic tangles in planar algebras.
  336. Jones, V. F. R. and Sunder, V. S. (1997). Introduction to subfactors. London Math. Soc. Lecture Notes Series {\mathbf 234}, Cambridge University Press.
  337. Jones, V. F. R. and Takesaki, M. (1984). Actions of compact abelian groups on semifinite injective factors. Acta Mathematica , {\mathbf 153}, 213--258.
  338. Jones, V. F. R. and Wassermann, A. (in preparation). Fermions on the circle and representations of loop groups.
  339. Jones, V. F. R. and Xu, F. (2004). Intersections of finite families of finite index subfactors. International Journal of Mathematics , {\mathbf 15}, 717--733. math.OA/0406331.
  340. Kac, V. (1990). Infinite dimensional Lie algebras. 3\`eme \'edition, Cambridge University Press .
  341. Kac, V., Longo, R. and Xu, F. (2004). Solitons in affine and permutation orbifolds. Communications in Mathematical Physics , {\mathbf 253}, 723--764. math.OA/0312512.
  342. Ka\v c, V. and Petersen, D. H. (1984). Infinite dimensional Lie algebras, theta functions, and modular forms. Advances in Mathematics , {\mathbf 53}, 125--264.
  343. Ka\v c, V. and Raina, A. K. (1987). Highest weight representations of infinite dimensional Lie algebras. World Scientific.
  344. Kadison, R. V. and Ringrose, J. R. (1983). Fundamentals of the Theory of Operator Algebras Vol I. Academic Press.
  345. Kadison, R. V. and Ringrose, J. R. (1986). Fundamentals of the Theory of Operator Algebras Vol II. Academic Press.
  346. Kajiwara, T., Pinzari, C., and Watatani, Y. (2004). Jones index theory for Hilbert  -bimodules and its equivalence with conjugation theory. Journal of Functional Analysis , {\mathbf 215}, 1--49. math.OA/0301259
  347. Kallman, R. R. (1971). Groups of inner automorphisms of von Neumann algebras. Journal of Functional Analysis , {\mathbf 7}, 43--60.
  348. Karowski, M. (1987). Conformal quantum field theories and integrable theories. {\em Proceedings of the Brasov Summer School, September 1987, ed. P. Dita et al., Academic Press}.
  349. Karowski, M. (1988). Finite size corrections for integrable systems and conformal properties of six-vertex models. Nuclear Physics B , {\mathbf 300}, 473--499.
  350. Kastler D. (1990). (editor) The algebraic theory of Superselection sectors. Introduction and recent results. World Scientific, Singapore .
  351. Kato, A. (1987). Classification of modular invariant partition functions in two dimensions. Modern Physics Letters A , {\mathbf 2}, 585--600.
  352. Kauffman, L. H. (1986). Chromatic polynomial, Potts model, Jones polynomial Lecture notes .
  353. Kauffman, L. (1987). State models and the Jones polynomial. Topology , {\mathbf 26}, 395--407.
  354. Kauffman, L. (1990). An invariant of regular isotopy. Transactions of the American Mathematical Society , {\mathbf 318}, 417--471.
  355. Kauffman, L. (1991). Knots and Physics . World Scientific, Singapore.
  356. Kauffman, L. and Lins, S. L. (1994). Temperley--Lieb recoupling theory and invariants of  -manifolds . Princeton University Press, Princeton.
  357. Kawahigashi, Y. (1992). Automorphisms commuting with a conditional expectation onto a subfactor with finite index. Journal of Operator Theory , {\mathbf 28}, 127--145.
  358. Kawahigashi, Y. (1992). Exactly solvable orbifold models and subfactors. Functional Analysis and Related Topics , Lecture Notes in Mathematics, Springer, {\mathbf 1540}, 127--147.
  359. Kawahigashi, Y. (1993). Centrally trivial automorphisms and an analogue of Connes's   for subfactors. Duke Mathematical Journal , {\mathbf 71}, 93--118.
  360. Kawahigashi, Y. (1994). Paragroup and their actions on subfactors. in {\em Subfactors --- Proceedings of the Taniguchi Symposium, Katata ---}, (ed. H. Araki, et al.), World Scientific, 64--84.
  361. Kawahigashi, Y. (1995). On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors. Journal of Functional Analysis , {\mathbf 127}, 63--107.
  362. Kawahigashi, Y. (1995). Orbifold subfactors, central sequences and the relative Jones invariant  . International Mathematical Research Notices , 129--140.
  363. Kawahigashi, Y. (1995). Classification of paragroup actions on subfactors. Publications of the RIMS, Kyoto University , {\mathbf 31}, 481--517.
  364. Kawahigashi, Y. (1996). Paragroups as quantized Galois groups of subfactors. Sugaku Expositions , {\mathbf 9}, 21--35.
  365. Kawahigashi, Y. (1997). Classification of approximately inner automorphisms of subfactors. Mathematische Annalen , {\mathbf 308}, 425--438.
  366. Kawahigashi, Y. (1997). Quantum doubles and orbifold subfactors. in Operator Algebras and Quantum Field Theory (ed. S. Doplicher, et al.), International Press, 271--283.
  367. Kawahigashi, Y. (1998). Subfactors and paragroup theory. in Operator Algebras and Operator Theory (ed. L. Ge, et al.), Contemporary Mathematics , {\mathbf 228}, 179--188.
  368. Kawahigashi, Y. (1999). Quantum Galois correspondence for subfactors. Journal of Functional Analysis , {\mathbf 167}, 481--497.
  369. Kawahigashi, Y. (2004). Braiding and nets of factors on the circle. in Operator Algebras and Applications (ed. H. Kosaki), Advanced Studies in Pure Mathematics {\mathbf 38}, 219--228.
  370. Kawahigashi, Y. (2001). Braiding and extensions of endomorphisms of subfactors. in Mathematical Physics in Mathematics and Physics (ed. R. Longo), The Fields Institute Communications {\mathbf 30}, Providence, Rhode Island: AMS Publications, 261--269.
  371. Kawahigashi, Y. (2002). Generalized Longo-Rehren subfactors and  -induction. Communications in Mathematical Physics , {\mathbf 226}, 269--287. math.OA/0107127.
  372. Kawahigashi, Y. (2003). Conformal quantum field theory and subfactors. Acta Mathematica Sinica , {\mathbf 19}, 557--566.
  373. Kawahigashi, Y. (2003). Classification of operator algebraic conformal field theories. "Advances in Quantum Dynamics", Contemporary Mathematics , {\mathbf 335}, 183--193. math.OA/0211141.
  374. Kawahigashi, Y. (2005). Subfactor theory and its applications --- operator algebras and quantum field theory ---. "Selected Papers on Differential Equations" , Amer. Math. Soc. Transl. {\mathbf 215}, Amer. Math. Soc., 97--108.
  375. Kawahigashi, Y. (2005). Topological quantum field theories and operator algebras. Quantum Field Theory and Noncommutative Geometry , Lecture Notes in Physics, Springer, {\mathbf 662}, 241--253. math.OA/0306112.
  376. Kawahigashi, Y. (2005). Classification of operator algebraic conformal field theories in dimensions one and two. XIVth International Congress on Mathematical Physics , World Scientific, 476--485. math-ph/0308029.
  377. Kawahigashi, Y. (preprint 2007). Conformal field theory and operator algebras. arXiv:0704.0097.
  378. Kawahigashi, Y. (preprint 2007). Superconformal field theory and operator algebras.
  379. Kawahigashi, Y. and Longo, R. (2004). Classification of Local Conformal Nets. Case  . Annals of Mathematics , {\mathbf 160}, 493--522. math-ph/0201015.
  380. Kawahigashi, Y. and Longo, R. (2004). Classification of two-dimensional local conformal nets with   and 2-cohomology vanishing for tensor categories. Communications in Mathematical Physics , {\mathbf 244}, 63--97. math-ph/0304022.
  381. Kawahigashi, Y. and Longo, R. (2005).Noncommutative spectral invariants and black hole entropy. Communications in Mathematical Physics , {\mathbf 257}, 193--225. math-ph/0405037.
  382. Kawahigashi, Y. and Longo, R. (2006). Local conformal nets arising from framed vertex operator algebras. Advances in Mathematics , {\mathbf 206}, 729--751. math.OA/0407263.
  383. Kawahigashi, Y., Longo, R. and M\"uger, M. (2001). Multi-interval subfactors and modularity of representations in conformal field theory. Communications in Mathematical Physics , {\mathbf 219}, 631--669. math.OA/9903104.
  384. Kawahigashi, Y., Longo, R., Pennig, U. and Rehren, K.-H. (2007). The classification of non-local chiral CFT with  . Communications in Mathematical Physics , {\mathbf 271}, 375--385. math.OA/0505130.