Let E ⊆ R 3 {\displaystyle {}E\subseteq \mathbb {R} ^{3}} be the plane defined by the linear equation 5 x + 7 y − 4 z = 0 {\displaystyle {}5x+7y-4z=0} . Determine a linear map
such that the image of φ {\displaystyle {}\varphi } is equal to E {\displaystyle {}E} .