Physics equations/19-Electric Potential and Electric Field/Q:SurfaceIntegralsCalculus/testbank
Study: http://en.wikiversity.org/wiki/Physics_equations/Sheet/All_chapters
c19ElectricPotentialField_SurfaceIntegral_v1
edit
c19ElectricPotentialField_SurfaceIntegral_v1
edit
copies
|
---|
===2=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.05+2.59z)\rho^2\hat\rho +7.4z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 6.457E+02 -b) 7.823E+02 -c) 9.477E+02 -d) 1.148E+03 +e) 1.391E+03 ===3=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.12+1.85z)\rho^3\hat\rho +8.88z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} +a) 8.525E+02 -b) 1.033E+03 -c) 1.251E+03 -d) 1.516E+03 -e) 1.837E+03 ===4=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2+1.45z)\rho^2\hat\rho +8.02z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} +a) 4.021E+02 -b) 4.872E+02 -c) 5.902E+02 -d) 7.151E+02 -e) 8.663E+02 ===5=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.14+2.8z)\rho^2\hat\rho +9.94z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 2.420E+02 -b) 2.931E+02 -c) 3.551E+02 +d) 4.303E+02 -e) 5.213E+02 ===6=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.85+1.33z)\rho^3\hat\rho +7.52z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 2.622E+03 -b) 3.177E+03 -c) 3.849E+03 -d) 4.663E+03 +e) 5.649E+03 ===7=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.07+2.87z)\rho^2\hat\rho +9.56z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} +a) 4.162E+02 -b) 5.042E+02 -c) 6.109E+02 -d) 7.401E+02 -e) 8.967E+02 ===8=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.17+1.5z)\rho^2\hat\rho +8.75z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 2.454E+02 -b) 2.973E+02 -c) 3.601E+02 +d) 4.363E+02 -e) 5.286E+02 ===9=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.28+1.72z)\rho^3\hat\rho +7.33z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 3.232E+03 -b) 3.915E+03 -c) 4.743E+03 -d) 5.747E+03 +e) 6.962E+03 ===10=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.04+1.66z)\rho^2\hat\rho +7.54z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 9.431E+02 -b) 1.143E+03 +c) 1.384E+03 -d) 1.677E+03 -e) 2.032E+03 ===11=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.21+1.16z)\rho^2\hat\rho +7.96z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 1.533E+03 -b) 1.857E+03 +c) 2.250E+03 -d) 2.725E+03 -e) 3.302E+03 ===12=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.12+1.68z)\rho^2\hat\rho +8.83z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} +a) 2.158E+03 -b) 2.614E+03 -c) 3.167E+03 -d) 3.837E+03 -e) 4.649E+03 ===13=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.05+2.05z)\rho^2\hat\rho +9.62z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 2.318E+02 -b) 2.808E+02 -c) 3.402E+02 +d) 4.122E+02 -e) 4.994E+02 ===14=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.93+2.31z)\rho^3\hat\rho +7.21z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 6.546E+02 -b) 7.931E+02 -c) 9.609E+02 +d) 1.164E+03 -e) 1.410E+03 ===15=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.24+1.11z)\rho^3\hat\rho +8.16z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 9.205E+02 -b) 1.115E+03 +c) 1.351E+03 -d) 1.637E+03 -e) 1.983E+03 ===16=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.96+2.52z)\rho^2\hat\rho +7.11z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 4.027E+02 -b) 4.879E+02 +c) 5.911E+02 -d) 7.162E+02 -e) 8.676E+02 ===17=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.86+2.43z)\rho^2\hat\rho +9.75z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} +a) 5.610E+02 -b) 6.796E+02 -c) 8.234E+02 -d) 9.975E+02 -e) 1.209E+03 ===18=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.24+2.08z)\rho^2\hat\rho +8.93z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 3.799E+02 -b) 4.603E+02 -c) 5.576E+02 +d) 6.756E+02 -e) 8.185E+02 ===19=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.89+1.31z)\rho^3\hat\rho +8.35z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 6.411E+02 -b) 7.767E+02 -c) 9.410E+02 +d) 1.140E+03 -e) 1.381E+03 ===20=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.37+2.6z)\rho^2\hat\rho +8.84z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 7.465E+02 -b) 9.044E+02 -c) 1.096E+03 -d) 1.327E+03 +e) 1.608E+03 ===21=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.45+2.26z)\rho^2\hat\rho +8.92z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 3.356E+02 -b) 4.066E+02 +c) 4.926E+02 -d) 5.968E+02 -e) 7.230E+02 ===22=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.88+1.29z)\rho^2\hat\rho +7.2z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 1.579E+03 +b) 1.914E+03 -c) 2.318E+03 -d) 2.809E+03 -e) 3.403E+03 ===23=== {<!--c19ElectricPotentialField_SurfaceIntegral_2-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.44+2.86z)\rho^2\hat\rho +7.42z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\int_{side}\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the curved side surface of the cylinder.} -a) 1.692E+03 -b) 2.050E+03 +c) 2.484E+03 -d) 3.009E+03 -e) 3.645E+03 |
c19ElectricPotentialField_SurfaceIntegral_v1
edit
copies
|
---|
===2=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.05+2.59z)\rho^2\hat\rho +7.4z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 6.46E+02 -b) 7.82E+02 -c) 9.48E+02 -d) 1.15E+03 +e) 1.39E+03 ===3=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.12+1.85z)\rho^3\hat\rho +8.88z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 3.96E+02 -b) 4.79E+02 -c) 5.81E+02 -d) 7.04E+02 +e) 8.53E+02 ===4=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2+1.45z)\rho^2\hat\rho +8.02z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.13E+03 -b) 1.37E+03 -c) 1.66E+03 +d) 2.01E+03 -e) 2.44E+03 ===5=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.14+2.8z)\rho^2\hat\rho +9.94z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 2.93E+02 -b) 3.55E+02 +c) 4.30E+02 -d) 5.21E+02 -e) 6.32E+02 ===6=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.85+1.33z)\rho^3\hat\rho +7.52z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 3.18E+03 -b) 3.85E+03 -c) 4.66E+03 +d) 5.65E+03 -e) 6.84E+03 ===7=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.07+2.87z)\rho^2\hat\rho +9.56z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.59E+03 -b) 1.93E+03 +c) 2.34E+03 -d) 2.83E+03 -e) 3.43E+03 ===8=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.17+1.5z)\rho^2\hat\rho +8.75z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 3.60E+02 +b) 4.36E+02 -c) 5.29E+02 -d) 6.40E+02 -e) 7.76E+02 ===9=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.28+1.72z)\rho^3\hat\rho +7.33z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.50E+04 +b) 1.82E+04 -c) 2.20E+04 -d) 2.66E+04 -e) 3.23E+04 ===10=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.04+1.66z)\rho^2\hat\rho +7.54z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 9.43E+02 -b) 1.14E+03 +c) 1.38E+03 -d) 1.68E+03 -e) 2.03E+03 ===11=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.21+1.16z)\rho^2\hat\rho +7.96z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 6.69E+03 -b) 8.10E+03 -c) 9.81E+03 -d) 1.19E+04 +e) 1.44E+04 ===12=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.12+1.68z)\rho^2\hat\rho +8.83z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.29E+04 +b) 1.56E+04 -c) 1.89E+04 -d) 2.30E+04 -e) 2.78E+04 ===13=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.05+2.05z)\rho^2\hat\rho +9.62z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.09E+03 -b) 1.32E+03 -c) 1.60E+03 -d) 1.94E+03 +e) 2.35E+03 ===14=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.93+2.31z)\rho^3\hat\rho +7.21z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 5.40E+02 -b) 6.55E+02 -c) 7.93E+02 -d) 9.61E+02 +e) 1.16E+03 ===15=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.24+1.11z)\rho^3\hat\rho +8.16z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 4.69E+03 -b) 5.69E+03 +c) 6.89E+03 -d) 8.35E+03 -e) 1.01E+04 ===16=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.96+2.52z)\rho^2\hat\rho +7.11z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} +a) 5.91E+02 -b) 7.16E+02 -c) 8.68E+02 -d) 1.05E+03 -e) 1.27E+03 ===17=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.86+2.43z)\rho^2\hat\rho +9.75z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 4.63E+02 +b) 5.61E+02 -c) 6.80E+02 -d) 8.23E+02 -e) 9.98E+02 ===18=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.24+2.08z)\rho^2\hat\rho +8.93z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 3.13E+03 -b) 3.79E+03 -c) 4.59E+03 -d) 5.56E+03 +e) 6.74E+03 ===19=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.89+1.31z)\rho^3\hat\rho +8.35z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 9.41E+02 +b) 1.14E+03 -c) 1.38E+03 -d) 1.67E+03 -e) 2.03E+03 ===20=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.37+2.6z)\rho^2\hat\rho +8.84z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 4.63E+03 +b) 5.61E+03 -c) 6.79E+03 -d) 8.23E+03 -e) 9.97E+03 ===21=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=2, and height, h=4, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.45+2.26z)\rho^2\hat\rho +8.92z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.29E+03 -b) 1.56E+03 -c) 1.89E+03 +d) 2.29E+03 -e) 2.77E+03 ===22=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (1.88+1.29z)\rho^2\hat\rho +7.2z^2\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 1.08E+03 -b) 1.30E+03 -c) 1.58E+03 +d) 1.91E+03 -e) 2.32E+03 ===23=== {<!--c19ElectricPotentialField_SurfaceIntegral_3-->A cylinder of radius, r=3, and height, h=6, is centered at the origin and oriented along the z axis. A vector field can be expressed in cylindrical coordinates as, <br> <math>\vec\mathfrak F = (2.44+2.86z)\rho^2\hat\rho +7.42z^3\hat z </math><br> Let <math>\hat n</math> be the outward unit normal to this cylinder and evaluate ,<br> <math>\left |\oint\vec\mathfrak F\cdot\hat n dA\right|\,</math><br>over the entire surface of the cylinder.} -a) 9.41E+03 -b) 1.14E+04 +c) 1.38E+04 -d) 1.67E+04 -e) 2.03E+04 |