If f and g are functions of x and a and b are constants, then: d d x x n = n x n − 1 . {\displaystyle {\frac {d}{dx}}x^{n}=nx^{n-1}.}
d ( a f + b g ) d x = a d f d x + b d g d x . {\displaystyle {\frac {d(af+bg)}{dx}}=a{\frac {df}{dx}}+b{\frac {dg}{dx}}.} d ( f g ) d x = d f d x g + f d g d x . {\displaystyle {\frac {d(fg)}{dx}}={\frac {df}{dx}}g+f{\frac {dg}{dx}}.}
d h d x = d h d g d g d x . {\displaystyle {\frac {dh}{dx}}={\frac {dh}{dg}}{\frac {dg}{dx}}.} ( f g ) ′ = f ′ g − g ′ f g 2 . {\displaystyle \left({\frac {f}{g}}\right)'={\frac {f'g-g'f}{g^{2}}}.}
If y=y(x) and x=x(y) are inverse functions then: d x d y = 1 d y / d x . {\displaystyle {\frac {dx}{dy}}={\frac {1}{dy/dx}}.}
Indefinite integrals, where C {\displaystyle C} is the arbitrary constant of integration:
If a is a constant, then: d d x ( e a x ) = a e a x . {\displaystyle {\frac {d}{dx}}\left(e^{ax}\right)=ae^{ax}.} d d x ( ln x ) = 1 x , x ≠ 0 {\displaystyle {\frac {d}{dx}}\left(\ln x\right)={1 \over x},\quad x\neq 0} ⇒ ( ln f ) ′ = f ′ f {\displaystyle \Rightarrow (\ln f)'={\frac {f'}{f}}\quad } wherever f is positive.