For a permutation matrix M ρ {\displaystyle {}M_{\rho }} over C {\displaystyle {}\mathbb {C} } for a cycle ρ ∈ S n {\displaystyle {}\rho \in S_{n}} with ρ : i 1 ↦ i 2 ↦ … ↦ i k ↦ i 1 {\displaystyle {}\rho :i_{1}\mapsto i_{2}\mapsto \ldots \mapsto i_{k}\mapsto i_{1}}
root of unity ζ {\displaystyle {}\zeta } , the vectors
are eigenvectors of M ρ {\displaystyle {}M_{\rho }} for the eigenvalue
In particular, a permutation matrix of a cycle over C {\displaystyle {}\mathbb {C} } is diagonalizable.