Partitions of multisets
Multisets have partitions just like normal sets. The following table shows how many of them a multiset corresponding to a particular integer partition has. Lists are linked from the table.
This article references sequences from the OEIS. |
0 |
1 2 |
2 3 |
3 2,2 |
4 4 |
5 3,2 |
6 5 |
7 2,2,2 |
8 4,2 |
9 3,3 |
10 6 |
11 3,2,2 |
12 5,2 |
13 4,3 |
14 7 |
15 2,2,2,2 |
16 4,2,2 |
17 3,3,2 |
18 6,2 |
19 5,3 |
20 4,4 |
21 8 |
Σ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | |||||||||||||||||||||
1 | 1 | 1 | |||||||||||||||||||||
2 | 2 | 2 | 4 | ||||||||||||||||||||
3 | 5 | 4 | 3 | 12 | |||||||||||||||||||
4 | 15 | 11 | 7 | 9 | 5 | 47 | |||||||||||||||||
5 | 52 | 36 | 21 | 26 | 12 | 16 | 7 | 170 | |||||||||||||||
6 | 203 | 135 | 74 | 92 | 38 | 52 | 19 | 66 | 29 | 31 | 11 | 750 | |||||||||||
7 | 877 | 566 | 296 | 371 | 141 | 198 | 64 | 249 | 98 | 109 | 30 | 137 | 47 | 57 | 15 | 3255 | |||||||
8 | 4140 | 2610 | 1315 | 1663 | 592 | 850 | 250 | 1075 | 392 | 444 | 105 | 560 | 171 | 212 | 45 | 712 | 269 | 300 | 77 | 97 | 109 | 22 | 16010 |
triangle: A249620, columns correspond to integer partitions (A194602), row sums: A035310
col 0: A000110 (Bell), col 1: A035098 (near-Bell), col 2: A169587, col 4: A169588 end−1: A091437, end: A000041 (partition numbers)
Right columns
editThe right columns give a reflection of the triangle A126442.
Columns: A000041(1...) − 1 = 0, 1, 2, 4, 6, 10, 14, 21...
0 |
1 2 |
2 3 |
4 4 |
6 5 |
10 6 |
14 7 |
21 8 |
Σ | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | |||||||
2 | 2 | 2 | 4 | ||||||
3 | 5 | 4 | 3 | 12 | |||||
4 | 15 | 11 | 7 | 5 | 38 | ||||
5 | 52 | 36 | 21 | 12 | 7 | 128 | |||
6 | 203 | 135 | 74 | 38 | 19 | 11 | 480 | ||
7 | 877 | 566 | 296 | 141 | 64 | 30 | 15 | 1989 | |
8 | 4140 | 2610 | 1315 | 592 | 250 | 105 | 45 | 22 | 9079 |
Row sums: 1, 4, 12, 38, 128, 480, 1989, 9079...
Main diagonal: 1, 4, 21, 141...
Diagonals on the right:
A000041 = 1, 2, 3, 5, 7, 11, 15, 22...
A000070 = 2, 4, 7, 12, 19, 30, 45...
A082775 = 5, 11, 21, 38, 64, 105...
Another triangle is mentioned in A126442 as the second of a series.
I guess that 3, 5, 8, 12... is supposed to be the sequence of integer partitions with two non-one addends, one of them being 2.
That would be the columns: A248374 = 3, 5, 8, 12, 18, 25, 36, 49, 67, 90, 121, 158...
3 2,2 |
5 3,2 |
8 4,2 |
12 5,2 |
18 6,2 |
Σ | |
---|---|---|---|---|---|---|
4 | 9 | 9 | ||||
5 | 26 | 16 | 42 | |||
6 | 92 | 52 | 29 | 173 | ||
7 | 371 | 198 | 98 | 47 | 714 | |
8 | 1663 | 850 | 392 | 171 | 77 | 3153 |
Row sums: 9, 42, 173, 714, 3153...
Diagonals on the right:
A000291 = 9,16,29,47,77...
A002763 = 26,52,98,171...
Left columns
editColumns: A000041(1...) = 1, 2, 3, 5, 7, 11, 12...
1 2 |
2 3 |
3 2,2 |
5 3,2 |
7 2,2,2 |
11 3,2,2 |
15 2,2,2,2 |
Σ | |
---|---|---|---|---|---|---|---|---|
2 | 2 | 2 | ||||||
3 | 4 | 3 | 7 | |||||
4 | 11 | 7 | 9 | 27 | ||||
5 | 36 | 21 | 26 | 16 | 99 | |||
6 | 135 | 74 | 92 | 52 | 66 | 419 | ||
7 | 566 | 296 | 371 | 198 | 249 | 137 | 1817 | |
8 | 2610 | 1315 | 1663 | 850 | 1075 | 560 | 712 | 8785 |
Row sums: 2, 7, 27, 99, 419, 1817, 8785...
Main diagonal: 2, 7, 92, 850...
Second from right columns
editColumns: A000041(4...) − 2 = 3, 5, 9, 13, 20...
3 2,2 |
5 3,2 |
9 3,3 |
13 4,3 |
20 4,4 |
Σ | |
---|---|---|---|---|---|---|
4 | 9 | 9 | ||||
5 | 26 | 16 | 42 | |||
6 | 92 | 52 | 31 | 175 | ||
7 | 371 | 198 | 109 | 57 | 735 | |
8 | 1663 | 850 | 444 | 212 | 109 | 3278 |
Row sums: 9,42,175,735,3278...
Main diagonal: 9, 52, 444...
Diagonal on the right: A091437 = 9, 16, 31, 57, 109...