By using the Lagrange method, we need to find the lagrange basis polynominals first.Since we know

So we can get the basis polynominals as following:




Thus the interpolating polynomial then is:
![{\displaystyle {\begin{aligned}L(x)&=f(x_{0})\ell _{0}(x)+f(x_{1})\ell _{1}(x)+f(x_{2})\ell _{2}(x)+f(x_{3})\ell _{3}(x)\\[10pt]&=2\cdot {1 \over 16}(x-1)(x-5)(x-7)+4\cdot {-1 \over 16}(x-1)(x-3)(x-7)+6\cdot {-1 \over 16}(x-1)(x-3)(x-7)+8\cdot {1 \over 48}(x-1)(x-3)(x-5)\\[10pt]&={\frac {5}{12}}x^{3}-{\frac {65}{12}}x^{2}+{\frac {247}{12}}x-{\frac {163}{12}}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0f8425accdce1cdf4d8c668a1812b07f59893ede)
Therefore, we get the Lagrange form interpolating polynomial: