Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Normed vector space/Metric space/Fact/Proof
Language
Watch
Edit
<
Normed vector space/Metric space/Fact
Proof
We have
d
(
u
,
v
)
=
‖
u
−
v
‖
=
0
{\displaystyle {}d{\left(u,v\right)}=\Vert {u-v}\Vert =0}
if and only if
u
−
v
=
0
{\displaystyle {}u-v=0}
, that is,
u
=
v
{\displaystyle {}u=v}
.
We have
d
(
u
,
v
)
=
‖
u
−
v
‖
=
‖
−
1
(
v
−
u
)
‖
=
|
−
1
|
⋅
‖
v
−
u
‖
=
d
(
v
,
u
)
.
{\displaystyle {}{\begin{aligned}d{\left(u,v\right)}&=\Vert {u-v}\Vert \\&=\Vert {-1(v-u)}\Vert \\&=\vert {-1}\vert \cdot \Vert {v-u}\Vert \\&=d{\left(v,u\right)}.\end{aligned}}}
For arbitrary
w
∈
V
{\displaystyle {}w\in V}
, we have, due to the definition of a norm
d
(
u
,
v
)
=
‖
u
−
v
‖
≤
‖
u
−
w
‖
+
‖
w
−
v
‖
=
d
(
u
,
w
)
+
d
(
w
,
v
)
.
{\displaystyle {}{\begin{aligned}d{\left(u,v\right)}&=\Vert {u-v}\Vert \\&\leq \Vert {u-w}\Vert +\Vert {w-v}\Vert \\&=d{\left(u,w\right)}+d{\left(w,v\right)}.\end{aligned}}}
To fact