Timoshenko beam.
u
1
=
u
0
(
x
)
+
z
φ
x
u
2
=
0
u
3
=
w
0
(
x
)
{\displaystyle {\begin{aligned}u_{1}&=u_{0}(x)+z\varphi _{x}\\u_{2}&=0\\u_{3}&=w_{0}(x)\end{aligned}}}
ε
x
x
=
ε
x
x
0
+
z
ε
x
x
1
γ
x
z
=
γ
x
z
0
{\displaystyle {\begin{aligned}\varepsilon _{xx}&=\varepsilon _{xx}^{0}+z\varepsilon _{xx}^{1}\\\gamma _{xz}&=\gamma _{xz}^{0}\end{aligned}}}
ε
x
x
0
=
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
ε
x
x
1
=
d
φ
x
d
x
γ
x
z
0
=
φ
x
+
d
w
0
d
x
{\displaystyle {\begin{aligned}\varepsilon _{xx}^{0}&={\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\\\varepsilon _{xx}^{1}&={\cfrac {d\varphi _{x}}{dx}}\\\gamma _{xz}^{0}&=\varphi _{x}+{\cfrac {dw_{0}}{dx}}\end{aligned}}}
Principle of Virtual Work
edit
Constitutive Relations
edit
σ
x
x
=
E
ε
x
x
;
σ
x
z
=
G
γ
x
z
{\displaystyle \sigma _{xx}=E\varepsilon _{xx}~;\qquad \sigma _{xz}=G\gamma _{xz}}
Then,
N
x
x
=
A
x
x
ε
x
x
0
+
B
x
x
ε
x
x
1
M
x
x
=
B
x
x
ε
x
x
0
+
D
x
x
ε
x
x
1
Q
x
=
S
x
x
γ
x
z
0
{\displaystyle {\begin{aligned}N_{xx}&=A_{xx}~\varepsilon _{xx}^{0}+B_{xx}~\varepsilon _{xx}^{1}\\\\M_{xx}&=B_{xx}~\varepsilon _{xx}^{0}+D_{xx}~\varepsilon _{xx}^{1}\\\\Q_{x}&=S_{xx}~\gamma _{xz}^{0}\end{aligned}}}
where
S
x
x
=
K
s
∫
A
G
d
A
←
shear stiffness
{\displaystyle S_{xx}=K_{s}\int _{A}G~dA\qquad \leftarrow \qquad {\text{shear stiffness}}}
Equilibrium Equations
edit
d
d
x
{
A
x
x
[
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
]
}
+
f
=
0
d
d
x
{
S
x
x
(
d
w
0
d
x
+
φ
x
)
+
A
x
x
d
w
0
d
x
[
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
]
}
+
q
=
0
d
d
x
(
D
x
x
d
φ
x
d
x
)
+
S
x
x
(
d
w
0
d
x
+
φ
x
)
=
0
{\displaystyle {\begin{aligned}{\cfrac {d}{dx}}\left\{A_{xx}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]\right\}+f&=0\\{\cfrac {d}{dx}}\left\{S_{xx}\left({\cfrac {dw_{0}}{dx}}+\varphi _{x}\right)+A_{xx}{\cfrac {dw_{0}}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]\right\}+q&=0\\{\cfrac {d}{dx}}\left(D_{xx}{\cfrac {d\varphi _{x}}{dx}}\right)+S_{xx}\left({\cfrac {dw_{0}}{dx}}+\varphi _{x}\right)&=0\end{aligned}}}
∫
x
a
x
b
A
x
x
d
(
δ
u
0
)
d
x
[
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
]
d
x
=
∫
x
a
x
b
f
δ
u
0
d
x
+
[
N
x
x
δ
u
0
]
x
a
x
b
∫
x
a
x
b
A
x
x
d
(
δ
w
0
)
d
x
d
w
0
d
x
[
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
]
d
x
+
∫
x
a
x
b
S
x
x
d
(
δ
w
0
)
d
x
(
d
w
0
d
x
+
φ
x
)
d
x
=
∫
x
a
x
b
q
δ
u
0
d
x
+
[
(
N
x
x
d
w
0
d
x
+
Q
x
)
δ
w
0
]
x
a
x
b
−
∫
x
a
x
b
S
x
x
δ
φ
x
(
d
w
0
d
x
+
φ
x
)
d
x
+
∫
x
a
x
b
D
x
x
d
(
δ
φ
x
)
d
x
d
φ
x
d
x
d
x
=
[
M
x
x
δ
φ
x
]
x
a
x
b
{\displaystyle {\begin{aligned}\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d(\delta u_{0})}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]~dx&=\int _{x_{a}}^{x_{b}}f\delta u_{0}~dx+\left[N_{xx}\delta u_{0}\right]_{x_{a}}^{x_{b}}\\\\\int _{x_{a}}^{x_{b}}A_{xx}{\cfrac {d(\delta w_{0})}{dx}}{\cfrac {dw_{0}}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]~dx&+\int _{x_{a}}^{x_{b}}S_{xx}{\cfrac {d(\delta w_{0})}{dx}}\left({\cfrac {dw_{0}}{dx}}+\varphi _{x}\right)~dx=\\&\int _{x_{a}}^{x_{b}}q\delta u_{0}~dx+\left[\left(N_{xx}{\cfrac {dw_{0}}{dx}}+Q_{x}\right)\delta w_{0}\right]_{x_{a}}^{x_{b}}\\\\-\int _{x_{a}}^{x_{b}}S_{xx}\delta \varphi _{x}\left({\cfrac {dw_{0}}{dx}}+\varphi _{x}\right)~dx&+\int _{x_{a}}^{x_{b}}D_{xx}{\cfrac {d(\delta \varphi _{x})}{dx}}{\cfrac {d\varphi _{x}}{dx}}~dx=\left[M_{xx}\delta \varphi _{x}\right]_{x_{a}}^{x_{b}}\end{aligned}}}
Finite element model
edit
Linear
u
0
{\displaystyle u_{0}}
, Linear
w
0
{\displaystyle w_{0}}
, Linear
φ
x
{\displaystyle \varphi _{x}}
.
d
w
0
d
x
=
constant
.
{\displaystyle {\cfrac {dw_{0}}{dx}}=~~{\text{constant}}.}
But, for thin beams,
d
w
0
d
x
=
slope
=
−
φ
x
←
(
linear!
)
{\displaystyle {\cfrac {dw_{0}}{dx}}=~~{\text{slope}}~~=-\varphi _{x}~~\leftarrow ~~({\text{linear!}})}
If constant
φ
x
{\displaystyle \varphi _{x}}
d
φ
x
d
x
=
0
{\displaystyle {\cfrac {d\varphi _{x}}{dx}}=0}
Also
Q
x
=
S
x
x
φ
x
≠
0
⟹
{\displaystyle Q_{x}=S_{xx}\varphi _{x}\neq 0\implies }
Non-zero transverse shear.
M
x
x
=
D
x
x
d
φ
x
d
x
=
0
⟹
{\displaystyle M_{xx}=D_{xx}{\cfrac {d\varphi _{x}}{dx}}=0\implies }
Zero bending energy.
Result : Zero displacements and rotations
⟹
{\displaystyle \implies }
Shear Locking!
Recall
d
d
x
{
A
x
x
[
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
]
}
+
f
=
0
{\displaystyle {\cfrac {d}{dx}}\left\{A_{xx}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]\right\}+f=0}
or,
d
d
x
{
A
x
x
ε
x
x
0
}
+
f
=
0
{\displaystyle {\cfrac {d}{dx}}\left\{A_{xx}\varepsilon _{xx}^{0}\right\}+f=0}
If
f
=
0
{\displaystyle f=0}
and
A
x
x
=
{\displaystyle A_{xx}=}
constant
A
x
x
d
d
x
(
ε
x
x
0
)
=
0
⟹
ε
x
x
0
=
constant
.
{\displaystyle A_{xx}{\cfrac {d}{dx}}(\varepsilon _{xx}^{0})=0\qquad \implies \qquad \varepsilon _{xx}^{0}=~{\text{constant}}.}
If there is only bending but no stretching,
ε
x
x
0
=
0
=
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
{\displaystyle \varepsilon _{xx}^{0}=0={\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}}
Hence,
d
u
0
d
x
≈
(
d
w
0
d
x
)
2
{\displaystyle {\cfrac {du_{0}}{dx}}\approx \left({\cfrac {dw_{0}}{dx}}\right)^{2}}
Also recall:
d
d
x
{
S
x
x
(
d
w
0
d
x
+
φ
x
)
+
A
x
x
d
w
0
d
x
[
d
u
0
d
x
+
1
2
(
d
w
0
d
x
)
2
]
}
+
q
=
0
{\displaystyle {\cfrac {d}{dx}}\left\{S_{xx}\left({\cfrac {dw_{0}}{dx}}+\varphi _{x}\right)+A_{xx}{\cfrac {dw_{0}}{dx}}\left[{\cfrac {du_{0}}{dx}}+{\frac {1}{2}}\left({\cfrac {dw_{0}}{dx}}\right)^{2}\right]\right\}+q=0}
or,
d
d
x
{
S
x
x
γ
x
z
0
+
A
x
x
d
w
0
d
x
ε
x
x
0
}
+
q
=
0
{\displaystyle {\cfrac {d}{dx}}\left\{S_{xx}\gamma _{xz}^{0}+A_{xx}{\cfrac {dw_{0}}{dx}}\varepsilon _{xx}^{0}\right\}+q=0}
If
q
=
0
{\displaystyle q=0}
and
S
x
x
=
{\displaystyle S_{xx}=}
constant, and no membrane strains
S
x
x
d
d
x
(
γ
x
z
0
)
=
0
⟹
γ
x
z
=
constant
=
d
w
0
d
x
+
φ
x
{\displaystyle S_{xx}{\cfrac {d}{dx}}(\gamma _{xz}^{0})=0\qquad \implies \qquad {\gamma _{xz}=~{\text{constant}}}~={\cfrac {dw_{0}}{dx}}+\varphi _{x}}
Hence,
φ
x
≈
d
w
0
d
x
{\displaystyle \varphi _{x}\approx {\cfrac {dw_{0}}{dx}}}
Shape functions need to satisfy:
d
u
0
d
x
≈
(
d
w
0
d
x
)
2
;
and
φ
x
≈
d
w
0
d
x
{\displaystyle {\cfrac {du_{0}}{dx}}\approx \left({\cfrac {dw_{0}}{dx}}\right)^{2}~;\qquad {\text{and}}\qquad \varphi _{x}\approx {\cfrac {dw_{0}}{dx}}}
Linear
u
0
{\displaystyle u_{0}}
, Linear
w
0
{\displaystyle w_{0}}
, Linear
φ
x
{\displaystyle \varphi _{x}}
.
First condition
⟹
{\displaystyle \implies }
constant
=
{\displaystyle =}
constant. Passes! No Membrane Locking.
Second condition
⟹
{\displaystyle \implies }
linear
=
{\displaystyle =}
constant. Fails! Shear Locking.
Linear
u
0
{\displaystyle u_{0}}
, Quadratic
w
0
{\displaystyle w_{0}}
, Linear
φ
x
{\displaystyle \varphi _{x}}
.
First condition
⟹
{\displaystyle \implies }
constant
=
{\displaystyle =}
quadratic. Fails! Membrane Locking.
Second condition
⟹
{\displaystyle \implies }
linear
=
{\displaystyle =}
linear. Passes! No Shear Locking.
Quadratic
u
0
{\displaystyle u_{0}}
, Quadratic
w
0
{\displaystyle w_{0}}
, Linear
φ
x
{\displaystyle \varphi _{x}}
.
First condition
⟹
{\displaystyle \implies }
linear
=
{\displaystyle =}
quadratic. Fails! Membrane Locking.
Second condition
⟹
{\displaystyle \implies }
linear
=
{\displaystyle =}
linear. Passes! No Shear Locking.
Cubic
u
0
{\displaystyle u_{0}}
, Quadratic
w
0
{\displaystyle w_{0}}
, Linear
φ
x
{\displaystyle \varphi _{x}}
.
First condition
⟹
{\displaystyle \implies }
quadratic
=
{\displaystyle =}
quadratic. Passes! No Membrane Locking.
Second condition
⟹
{\displaystyle \implies }
linear
=
{\displaystyle =}
linear. Passes! No Shear Locking.
Overcoming Shear Locking
edit