Nonlinear finite elements/Homework 6/Solutions/Problem 1/Part 15
Problem 1: Part 15
editExpress the stress rate and the modified rate of deformation in the global coordinate system.
The modified laminar rate of deformation is
Alternatively, we can write
The modified laminar stress rate is
Alternatively, we can write
To get the global stress rate and rate of deformation, we have to rotate the components to the global basis using
Computing these quantities gives us
and
The Maple code for the above computations is given below.
> #
> # Apply plane stress condition
> #
> Dxx := DLamVoigt[1,1];
> Dyy := -C13*Dxx/C11;
> #
> # Updated laminar rate of deformation
> #
> DLamVoigtUpd := linalg[matrix](3,1,[Dlam[1,1], Dyy, Dlam[1,2]]);
> #
> # Updated laminar stress
> #
> DDtSigLamVoigtUpd := evalm(CLamVoigt&*DLamVoigtUpd);
> #
> # Rotate back to global basis
> #
> PlaneStressSig := array(1..2,1..2,symmetric):
> PlaneStressSig[1,1] := DDtSigLamVoigtUpd[1,1]:
> PlaneStressSig[2,2] := DDtSigLamVoigtUpd[2,1]:
> PlaneStressSig[1,2] := DDtSigLamVoigtUpd[3,1]:
> evalm(PlaneStressSig);
> GlobalPlaneStressSig := evalm(Rlam&*PlaneStressSig&*RlamT);
> PlaneStressDlam := array(1..2,1..2,symmetric):
> PlaneStressDlam[1,1] := DLamVoigtUpd[1,1]:
> PlaneStressDlam[2,2] := DLamVoigtUpd[2,1]:
> PlaneStressDlam[1,2] := DLamVoigtUpd[3,1]:
> evalm(PlaneStressDlam);
> GlobalPlaneStressDlam := evalm(Rlam&*PlaneStressDlam&*RlamT);