Problem 1: Part 15: Finding the plastic flow parameter
edit
The discretized form of the Kuhn-Tucker conditions in conjunction
with the consistency condition gives us
f
(
σ
n
+
1
,
α
n
+
1
,
T
n
+
1
)
=
0
.
{\displaystyle f({\boldsymbol {\sigma }}_{n+1},\alpha _{n+1},T_{n+1})=0~.}
Use this condition and the relations you have derived in the previous sections to arrive at
a nonlinear equation in
Δ
γ
{\displaystyle \Delta \gamma }
that can be solved using Newton
iterations.
The yield function is
f
=
3
2
s
:
s
−
[
σ
0
+
B
α
n
]
[
1
−
(
T
−
T
0
T
m
−
T
0
)
]
{\displaystyle f={\sqrt {\cfrac {3}{2}}}~{\sqrt {\mathbf {s} :\mathbf {s} }}-\left[\sigma _{0}+B\alpha ^{n}\right]\left[1-\left({\cfrac {T-T_{0}}{T_{m}-T_{0}}}\right)\right]}
Therefore the discretized form of Kuhn-Tucker + consistency is
3
2
s
n
+
1
:
s
n
+
1
−
[
σ
0
+
B
α
n
+
1
n
]
[
1
−
(
T
n
+
1
−
T
0
T
m
−
T
0
)
]
=
0
{\displaystyle {\sqrt {\cfrac {3}{2}}}~{\sqrt {\mathbf {s} _{n+1}:\mathbf {s} _{n+1}}}-\left[\sigma _{0}+B\alpha _{n+1}^{n}\right]\left[1-\left({\cfrac {T_{n+1}-T_{0}}{T_{m}-T_{0}}}\right)\right]=0}
or,
s
n
+
1
:
s
n
+
1
=
2
3
[
σ
0
+
B
α
n
+
1
n
]
2
[
1
−
(
T
n
+
1
−
T
0
T
m
−
T
0
)
]
2
{\displaystyle \mathbf {s} _{n+1}:\mathbf {s} _{n+1}={\cfrac {2}{3}}\left[\sigma _{0}+B\alpha _{n+1}^{n}\right]^{2}\left[1-\left({\cfrac {T_{n+1}-T_{0}}{T_{m}-T_{0}}}\right)\right]^{2}}
Now,
s
n
+
1
=
s
n
+
1
trial
−
2
μ
3
2
Δ
γ
n
n
{\displaystyle \mathbf {s} _{n+1}=\mathbf {s} _{n+1}^{\text{trial}}-2~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {n} _{n}}
Therefore,
s
n
+
1
:
s
n
+
1
=
s
n
+
1
trial
:
s
n
+
1
trial
−
4
μ
3
2
Δ
γ
s
n
+
1
trial
:
n
n
+
4
μ
2
3
2
(
Δ
γ
)
2
n
n
:
n
n
=
s
n
+
1
trial
:
s
n
+
1
trial
−
4
μ
3
2
Δ
γ
s
n
+
1
trial
:
n
n
+
6
μ
2
(
Δ
γ
)
2
{\displaystyle {\begin{aligned}\mathbf {s} _{n+1}:\mathbf {s} _{n+1}&=\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {s} _{n+1}^{\text{trial}}-4~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {n} _{n}+4~\mu ^{2}~{\cfrac {3}{2}}~(\Delta \gamma )^{2}~\mathbf {n} _{n}:\mathbf {n} _{n}\\&=\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {s} _{n+1}^{\text{trial}}-4~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {n} _{n}+6~\mu ^{2}~(\Delta \gamma )^{2}\end{aligned}}}
Plugging into the discretized yield condition, we have
2
3
[
σ
0
+
B
α
n
+
1
n
]
2
[
1
−
(
T
n
+
1
−
T
0
T
m
−
T
0
)
]
2
=
s
n
+
1
trial
:
s
n
+
1
trial
−
4
μ
3
2
Δ
γ
s
n
+
1
trial
:
n
n
+
6
μ
2
(
Δ
γ
)
2
{\displaystyle {\cfrac {2}{3}}\left[\sigma _{0}+B\alpha _{n+1}^{n}\right]^{2}\left[1-\left({\cfrac {T_{n+1}-T_{0}}{T_{m}-T_{0}}}\right)\right]^{2}=\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {s} _{n+1}^{\text{trial}}-4~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {n} _{n}+6~\mu ^{2}~(\Delta \gamma )^{2}}
or,
[
σ
0
+
B
α
n
+
1
n
]
2
[
1
−
(
T
n
+
1
−
T
0
T
m
−
T
0
)
]
2
=
3
2
s
n
+
1
trial
:
s
n
+
1
trial
−
6
μ
3
2
Δ
γ
s
n
+
1
trial
:
n
n
+
9
μ
2
(
Δ
γ
)
2
{\displaystyle \left[\sigma _{0}+B\alpha _{n+1}^{n}\right]^{2}\left[1-\left({\cfrac {T_{n+1}-T_{0}}{T_{m}-T_{0}}}\right)\right]^{2}={\cfrac {3}{2}}~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {s} _{n+1}^{\text{trial}}-6~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {n} _{n}+9~\mu ^{2}~(\Delta \gamma )^{2}}
Also
α
n
+
1
=
α
n
+
Δ
γ
ε
n
p
:
n
n
‖
ε
n
p
‖
T
n
+
1
=
T
n
+
3
2
χ
Δ
γ
ρ
n
C
p
‖
s
n
‖
{\displaystyle {\begin{aligned}\alpha _{n+1}&=\alpha _{n}+\Delta \gamma ~{\cfrac {{\boldsymbol {\varepsilon }}_{n}^{p}:\mathbf {n} _{n}}{\lVert {\boldsymbol {\varepsilon }}_{n}^{p}\rVert _{}}}\\T_{n+1}&=T_{n}+{\sqrt {\cfrac {3}{2}}}~{\cfrac {\chi ~\Delta \gamma }{\rho _{n}~C_{p}}}~\lVert \mathbf {s} _{n}\rVert _{}\end{aligned}}}
Therefore,
[
σ
0
+
B
{
α
n
+
Δ
γ
ε
n
p
:
n
n
‖
ε
n
p
‖
}
n
]
2
[
1
−
(
T
n
+
3
2
χ
Δ
γ
ρ
n
C
p
‖
s
n
‖
−
T
0
T
m
−
T
0
)
]
2
=
3
2
s
n
+
1
trial
:
s
n
+
1
trial
−
6
μ
3
2
Δ
γ
s
n
+
1
trial
:
n
n
+
9
μ
2
(
Δ
γ
)
2
{\displaystyle \left[\sigma _{0}+B\left\{\alpha _{n}+\Delta \gamma ~{\cfrac {{\boldsymbol {\varepsilon }}_{n}^{p}:\mathbf {n} _{n}}{\lVert {\boldsymbol {\varepsilon }}_{n}^{p}\rVert _{}}}\right\}^{n}\right]^{2}\left[1-\left({\cfrac {T_{n}+{\sqrt {\cfrac {3}{2}}}~{\cfrac {\chi ~\Delta \gamma }{\rho _{n}~C_{p}}}~\lVert \mathbf {s} _{n}\rVert _{}-T_{0}}{T_{m}-T_{0}}}\right)\right]^{2}={\cfrac {3}{2}}~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {s} _{n+1}^{\text{trial}}-6~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {n} _{n}+9~\mu ^{2}~(\Delta \gamma )^{2}}
The nonlinear equation in
Δ
γ
{\displaystyle \Delta \gamma }
is
g
(
Δ
γ
)
=
0
=
9
μ
2
(
Δ
γ
)
2
−
6
μ
3
2
Δ
γ
s
n
+
1
trial
:
n
n
−
[
σ
0
+
B
{
α
n
+
Δ
γ
ε
n
p
:
n
n
‖
ε
n
p
‖
}
n
]
2
[
1
−
(
T
n
+
3
2
χ
Δ
γ
ρ
n
C
p
‖
s
n
‖
−
T
0
T
m
−
T
0
)
]
2
+
3
2
s
n
+
1
trial
:
s
n
+
1
trial
{\displaystyle {\begin{aligned}g(\Delta \gamma )&=0\\&=9~\mu ^{2}~(\Delta \gamma )^{2}-6~\mu ~{\sqrt {\cfrac {3}{2}}}~\Delta \gamma ~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {n} _{n}\\&\qquad -\left[\sigma _{0}+B\left\{\alpha _{n}+\Delta \gamma ~{\cfrac {{\boldsymbol {\varepsilon }}_{n}^{p}:\mathbf {n} _{n}}{\lVert {\boldsymbol {\varepsilon }}_{n}^{p}\rVert _{}}}\right\}^{n}\right]^{2}\left[1-\left({\cfrac {T_{n}+{\sqrt {\cfrac {3}{2}}}~{\cfrac {\chi ~\Delta \gamma }{\rho _{n}~C_{p}}}\lVert \mathbf {s} _{n}\rVert _{}-T_{0}}{T_{m}-T_{0}}}\right)\right]^{2}\\&\qquad +{\cfrac {3}{2}}~\mathbf {s} _{n+1}^{\text{trial}}:\mathbf {s} _{n+1}^{\text{trial}}\end{aligned}}}