Recall the identity
⟨
A
⋅
B
⟩
−
⟨
A
⟩
⋅
⟨
B
⟩
=
⟨
[
A
−
⟨
A
⟩
]
⋅
[
B
−
⟨
B
⟩
]
⟩
.
{\displaystyle \langle {\boldsymbol {A}}\cdot {\boldsymbol {B}}\rangle -\langle {\boldsymbol {A}}\rangle \cdot \langle {\boldsymbol {B}}\rangle =\langle [{\boldsymbol {A}}-\langle {\boldsymbol {A}}\rangle ]\cdot [{\boldsymbol {B}}-\langle {\boldsymbol {B}}\rangle ]\rangle ~.}
Therefore,
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
⟨
[
F
˙
−
⟨
F
˙
⟩
]
⋅
[
P
−
⟨
P
⟩
]
⟩
=
1
V
0
∫
Ω
0
[
F
˙
−
⟨
F
˙
⟩
]
⋅
[
P
−
⟨
P
⟩
]
dV
=
1
V
0
∫
Ω
0
F
˙
⋅
P
dV
−
1
V
0
∫
Ω
0
F
˙
⋅
⟨
P
⟩
dV
−
1
V
0
∫
Ω
0
⟨
F
˙
⟩
⋅
P
dV
+
1
V
0
∫
Ω
0
⟨
F
˙
⟩
⋅
⟨
P
⟩
dV
=
1
V
0
∫
Ω
0
F
˙
⋅
P
dV
−
(
1
V
0
∫
Ω
0
F
˙
dV
)
⋅
⟨
P
⟩
−
⟨
F
˙
⟩
⋅
(
1
V
0
∫
Ω
0
P
dV
)
+
⟨
F
˙
⟩
⋅
(
1
V
0
∫
Ω
0
1
dV
)
⋅
⟨
P
⟩
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &=\langle [{\dot {\boldsymbol {F}}}-\langle {\dot {\boldsymbol {F}}}\rangle ]\cdot [{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]\rangle \\&={\cfrac {1}{V_{0}}}\int _{\Omega _{0}}[{\dot {\boldsymbol {F}}}-\langle {\dot {\boldsymbol {F}}}\rangle ]\cdot [{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]~{\text{dV}}\\&={\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}~{\text{dV}}-{\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}\cdot \langle {\boldsymbol {P}}\rangle ~{\text{dV}}-{\cfrac {1}{V_{0}}}\int _{\Omega _{0}}\langle {\dot {\boldsymbol {F}}}\rangle \cdot {\boldsymbol {P}}~{\text{dV}}+{\cfrac {1}{V_{0}}}\int _{\Omega _{0}}\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ~{\text{dV}}\\&={\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}~{\text{dV}}-\left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}~{\text{dV}}\right)\cdot \langle {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {P}}~{\text{dV}}\right)+\langle {\dot {\boldsymbol {F}}}\rangle \cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {\mathit {1}}}~{\text{dV}}\right)\cdot \langle {\boldsymbol {P}}\rangle ~.\end{aligned}}}
We want express the volume integrals above in terms of surface integrals.
To do that, recall that
∫
Ω
0
F
˙
⋅
P
dV
=
∫
∂
Ω
0
x
˙
⊗
(
P
T
⋅
N
)
dA
∫
Ω
0
F
˙
dV
=
∫
Ω
0
∇
0
x
˙
dV
=
∫
∂
Ω
0
x
˙
⊗
N
dA
∫
Ω
0
P
dV
=
∫
∂
Ω
0
X
⊗
(
P
T
⋅
N
)
dA
∫
Ω
0
1
dV
=
∫
Ω
0
∇
0
X
dV
=
∫
∂
Ω
0
X
⊗
N
dA
.
{\displaystyle {\begin{aligned}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}~{\text{dV}}&=\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}~{\text{dV}}&=\int _{\Omega _{0}}{\boldsymbol {\nabla }}_{0}~{\dot {\mathbf {x} }}~{\text{dV}}=\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes \mathbf {N} ~{\text{dA}}\\\int _{\Omega _{0}}{\boldsymbol {P}}~{\text{dV}}&=\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\\int _{\Omega _{0}}{\boldsymbol {\mathit {1}}}~{\text{dV}}&=\int _{\Omega _{0}}{\boldsymbol {\nabla }}_{0}~\mathbf {X} ~{\text{dV}}=\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes \mathbf {N} ~{\text{dA}}~.\end{aligned}}}
Therefore,
1
V
0
∫
Ω
0
F
˙
⋅
P
dV
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
(
P
T
⋅
N
)
dA
(
1
V
0
∫
Ω
0
F
˙
dV
)
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
(
x
˙
⊗
N
)
⋅
⟨
P
⟩
dA
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
[
⟨
P
⟩
T
⋅
N
]
dA
⟨
F
˙
⟩
⋅
(
1
V
0
∫
Ω
0
P
dV
)
=
1
V
0
∫
∂
Ω
0
⟨
F
˙
⟩
⋅
[
X
⊗
(
P
T
⋅
N
)
]
dA
=
1
V
0
∫
∂
Ω
0
[
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
⟨
F
˙
⟩
⋅
(
1
V
0
∫
Ω
0
1
dV
)
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
⟨
F
˙
⟩
⋅
(
X
⊗
N
)
⋅
⟨
P
⟩
dA
=
1
V
0
∫
∂
Ω
0
[
⟨
F
˙
⟩
⋅
X
]
⊗
[
⟨
P
⟩
T
⋅
N
]
dA
.
{\displaystyle {\begin{aligned}{\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}~{\text{dV}}&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\\left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}~{\text{dV}}\right)\cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}({\dot {\mathbf {x} }}\otimes \mathbf {N} )\cdot \langle {\boldsymbol {P}}\rangle ~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes [\langle {\boldsymbol {P\rangle ^{T}\cdot \mathbf {N} ]}}~{\text{dA}}\\\langle {\dot {\boldsymbol {F}}}\rangle \cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {P}}~{\text{dV}}\right)&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\langle {\dot {\boldsymbol {F}}}\rangle \cdot [\mathbf {X} \otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )]~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\\langle {\dot {\boldsymbol {F}}}\rangle \cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {\mathit {1}}}~{\text{dV}}\right)\cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\langle {\dot {\boldsymbol {F}}}\rangle \cdot (\mathbf {X} \otimes \mathbf {N} )\cdot \langle {\boldsymbol {P}}\rangle ~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [\langle {\boldsymbol {P}}\rangle ^{T}\cdot \mathbf {N} ]~{\text{dA}}~.\end{aligned}}}
Collecting the terms, we have
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
{
x
˙
⊗
(
P
T
⋅
N
)
−
x
˙
⊗
[
⟨
P
⟩
T
⋅
N
]
−
[
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
+
[
⟨
F
˙
⟩
⋅
X
]
⊗
[
⟨
P
⟩
T
⋅
N
]
}
dA
=
1
V
0
∫
∂
Ω
0
{
x
˙
⊗
[
P
T
⋅
N
−
⟨
P
⟩
T
⋅
N
]
−
[
⟨
F
˙
⟩
⋅
X
]
⊗
[
P
T
⋅
N
−
⟨
P
⟩
T
⋅
N
]
}
dA
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
[
P
T
⋅
N
−
⟨
P
⟩
T
⋅
N
]
dA
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\left\{{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )-{\dot {\mathbf {x} }}\otimes [\langle {\boldsymbol {P\rangle ^{T}\cdot \mathbf {N} ]}}-[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )+[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [\langle {\boldsymbol {P}}\rangle ^{T}\cdot \mathbf {N} ]\right\}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\left\{{\dot {\mathbf {x} }}\otimes [{\boldsymbol {P}}^{T}\cdot \mathbf {N} -\langle {\boldsymbol {P\rangle ^{T}\cdot \mathbf {N} ]}}-[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [{\boldsymbol {P}}^{T}\cdot \mathbf {N} -\langle {\boldsymbol {P}}\rangle ^{T}\cdot \mathbf {N} ]\right\}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [{\boldsymbol {P}}^{T}\cdot \mathbf {N} -\langle {\boldsymbol {P\rangle ^{T}\cdot \mathbf {N} ]}}~{\text{dA}}~.\end{aligned}}}
Therefore,
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
{
[
P
−
⟨
P
⟩
]
T
⋅
N
}
dA
.
{\displaystyle {\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes \left\{[{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]^{T}\cdot \mathbf {N} \right\}~{\text{dA}}~.}}
From the above, clearly
(
1
V
0
∫
Ω
0
F
˙
dV
)
⋅
⟨
P
⟩
=
⟨
F
˙
⟩
⋅
(
1
V
0
∫
Ω
0
P
dV
)
=
⟨
F
˙
⟩
⋅
(
1
V
0
∫
Ω
0
1
dV
)
⋅
⟨
P
⟩
.
{\displaystyle \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\dot {\boldsymbol {F}}}~{\text{dV}}\right)\cdot \langle {\boldsymbol {P}}\rangle =\langle {\dot {\boldsymbol {F}}}\rangle \cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {P}}~{\text{dV}}\right)=\langle {\dot {\boldsymbol {F}}}\rangle \cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {\mathit {1}}}~{\text{dV}}\right)\cdot \langle {\boldsymbol {P}}\rangle ~.}
Therefore,
1
V
0
∫
∂
Ω
0
x
˙
⊗
[
⟨
P
⟩
T
⋅
N
]
dA
=
1
V
0
∫
∂
Ω
0
[
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
=
1
V
0
∫
∂
Ω
0
[
⟨
F
˙
⟩
⋅
X
]
⊗
[
⟨
P
⟩
T
⋅
N
]
dA
.
{\displaystyle {\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes [\langle {\boldsymbol {P\rangle ^{T}\cdot \mathbf {N} ]}}~{\text{dA}}={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [\langle {\boldsymbol {P}}\rangle ^{T}\cdot \mathbf {N} ]~{\text{dA}}~.}
Thus we can alternatively write the expression for the difference as
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
{
x
˙
⊗
(
P
T
⋅
N
)
−
[
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
−
[
x
˙
⊗
[
⟨
P
T
⟩
⋅
N
]
−
[
⟨
F
˙
⟩
⋅
X
]
⊗
[
⟨
P
T
⟩
⋅
N
]
]
}
dA
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\left\{{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )-[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )-\left[{\dot {\mathbf {x} }}\otimes [\langle {\boldsymbol {P}}^{T}\rangle \cdot \mathbf {N} ]-[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [\langle {\boldsymbol {P}}^{T}\rangle \cdot \mathbf {N} ]\right]\right\}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\end{aligned}}}
or,
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
{
x
˙
⊗
(
P
T
⋅
N
)
−
x
˙
⊗
[
⟨
P
T
⟩
⋅
N
]
−
[
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
−
[
⟨
F
˙
⟩
⋅
X
]
⊗
[
⟨
P
T
⟩
⋅
N
]
]
}
dA
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
[
P
T
⋅
N
−
⟨
P
T
⟩
⋅
N
]
dA
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\left\{{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )-{\dot {\mathbf {x} }}\otimes [\langle {\boldsymbol {P}}^{T}\rangle \cdot \mathbf {N} ]-\left[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )-[\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes [\langle {\boldsymbol {P}}^{T}\rangle \cdot \mathbf {N} ]\right]\right\}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes [{\boldsymbol {P}}^{T}\cdot \mathbf {N} -\langle {\boldsymbol {P}}^{T}\rangle \cdot \mathbf {N} ]~{\text{dA}}~.\end{aligned}}}
Hence,
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
{
[
P
−
⟨
P
⟩
]
T
⋅
N
}
dA
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
{
[
P
−
⟨
P
⟩
]
T
⋅
N
}
dA
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes \left\{[{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]^{T}\cdot \mathbf {N} \right\}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes \left\{[{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]^{T}\cdot \mathbf {N} \right\}~{\text{dA}}~.\end{aligned}}}