Average stress power in a RVE
edit
Recall the equation for the balance of energy (with respect to the reference
configuration)
ρ
0
e
˙
=
P
T
:
F
˙
−
∇
0
∙
q
+
ρ
0
s
.
{\displaystyle \rho _{0}~{\dot {e}}={\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}-{\boldsymbol {\nabla }}_{0}\bullet \mathbf {q} +\rho _{0}~s~.}
The quantity
P
T
:
F
˙
{\displaystyle {\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}}
is the stress power.
The average stress power is defined as
⟨
P
T
:
F
˙
⟩
:=
1
V
0
∫
∂
Ω
0
P
T
:
F
˙
dV
.
{\displaystyle {\langle {\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}\rangle :={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}~{\text{dV}}~.}}
Here
P
T
{\displaystyle {\boldsymbol {P}}^{T}}
is an arbitrary self-equilibrating nominal stress field
that satisfies the balance of momentum (without any body forces or
inertial forces) and
F
˙
{\displaystyle {\dot {\boldsymbol {F}}}}
is the time rate of change of
F
{\displaystyle {\boldsymbol {F}}}
.
The reference configuration can be arbitrary. Also, the nominal stress
and the rate
F
˙
{\displaystyle {\dot {\boldsymbol {F}}}}
need not be related.
Note that in that case
tr
(
⟨
P
T
:
F
˙
⟩
)
=
1
V
0
∫
∂
Ω
0
tr
(
P
⋅
F
˙
)
dV
=
1
V
0
∫
∂
Ω
0
tr
(
F
˙
⋅
P
)
dV
=
tr
(
⟨
F
˙
⋅
P
⟩
)
.
{\displaystyle {{\text{tr}}(\langle {\boldsymbol {P}}^{T}:{\dot {\boldsymbol {F}}}\rangle )={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\text{tr}}({\boldsymbol {P}}\cdot {\dot {\boldsymbol {F}}})~{\text{dV}}={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\text{tr}}({\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}})~{\text{dV}}={\text{tr}}(\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle )~.}}
We can express the stress power in terms of boundary tractions and
boundary velocities using the relation (see Appendix)
∫
∂
Ω
v
⊗
(
S
T
⋅
n
)
dA
=
∫
Ω
[
∇
v
⋅
S
+
v
⊗
(
∇
∙
S
T
)
]
dV
.
{\displaystyle \int _{\partial {\Omega }}\mathbf {v} \otimes ({\boldsymbol {S}}^{T}\cdot \mathbf {n} )~{\text{dA}}=\int _{\Omega }[{\boldsymbol {\nabla }}\mathbf {v} \cdot {\boldsymbol {S}}+\mathbf {v} \otimes ({\boldsymbol {\nabla }}\bullet {\boldsymbol {S}}^{T})]~{\text{dV}}~.}
In this case, we have
∂
Ω
→
∂
Ω
0
{\displaystyle \partial {\Omega }\rightarrow \partial {\Omega }_{0}}
,
Ω
→
Ω
0
{\displaystyle \Omega \rightarrow \Omega _{0}}
,
∇
→
∇
0
{\displaystyle {\boldsymbol {\nabla }}\rightarrow {\boldsymbol {\nabla }}_{0}}
,
v
→
x
˙
{\displaystyle \mathbf {v} \rightarrow {\dot {\mathbf {x} }}}
,
S
→
P
{\displaystyle {\boldsymbol {S}}\rightarrow {\boldsymbol {P}}}
, and
n
→
N
{\displaystyle \mathbf {n} \rightarrow \mathbf {N} }
. Then
∫
∂
Ω
x
˙
⊗
(
P
T
⋅
N
)
dA
=
∫
Ω
[
∇
0
x
˙
⋅
P
+
x
˙
⊗
(
∇
0
∙
P
T
)
]
dV
.
{\displaystyle \int _{\partial {\Omega }}{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}=\int _{\Omega }[{\boldsymbol {\nabla }}_{0}~{\dot {\mathbf {x} }}\cdot {\boldsymbol {P}}+{\dot {\mathbf {x} }}\otimes ({\boldsymbol {\nabla }}_{0}\bullet {\boldsymbol {P}}^{T})]~{\text{dV}}~.}
Using the balance of linear momentum (in the absence of body and inertial
forces), we get
∫
∂
Ω
x
˙
⊗
(
P
T
⋅
N
)
dA
=
∫
Ω
∇
0
x
˙
⋅
P
dV
.
{\displaystyle \int _{\partial {\Omega }}{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}=\int _{\Omega }{\boldsymbol {\nabla }}_{0}~{\dot {\mathbf {x} }}\cdot {\boldsymbol {P}}~{\text{dV}}~.}
Recalling that
F
˙
=
∂
∂
t
(
∂
x
∂
X
)
=
∂
∂
X
(
∂
x
∂
t
)
=
∇
0
x
˙
{\displaystyle {\dot {\boldsymbol {F}}}={\frac {\partial }{\partial t}}\left({\frac {\partial \mathbf {x} }{\partial \mathbf {X} }}\right)={\frac {\partial }{\partial \mathbf {X} }}\left({\frac {\partial \mathbf {x} }{\partial t}}\right)={\boldsymbol {\nabla }}_{0}~{\dot {\mathbf {x} }}}
we then have
∫
Ω
F
˙
⋅
P
dV
=
∫
∂
Ω
x
˙
⊗
(
P
T
⋅
N
)
dA
.
{\displaystyle \int _{\Omega }{\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}~{\text{dV}}=\int _{\partial {\Omega }}{\dot {\mathbf {x} }}\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}~.}
If
T
¯
{\displaystyle {\bar {\mathbf {T} }}}
is a self equilibrating traction applied on the boundary
that leads to the stress field
P
{\displaystyle {\boldsymbol {P}}}
, i.e.,
T
¯
=
P
T
⋅
N
{\displaystyle {\bar {\mathbf {T} }}={\boldsymbol {P}}^{T}\cdot \mathbf {N} }
,
then we have
∫
Ω
F
˙
⋅
P
dV
=
∫
∂
Ω
x
˙
⊗
T
¯
dA
.
{\displaystyle {\int _{\Omega }{\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}~{\text{dV}}=\int _{\partial {\Omega }}{\dot {\mathbf {x} }}\otimes {\bar {\mathbf {T} }}~{\text{dA}}~.}}
Note that the fields
F
˙
{\displaystyle {\dot {\boldsymbol {F}}}}
and
P
{\displaystyle {\boldsymbol {P}}}
need not be related and hence the velocities
x
˙
{\displaystyle {\dot {\mathbf {x} }}}
and the tractions
T
¯
{\displaystyle {\bar {\mathbf {T} }}}
are not related.
If the boundary velocity field
x
˙
{\displaystyle {\dot {\mathbf {x} }}}
leads to the rate
F
˙
{\displaystyle {\dot {\boldsymbol {F}}}}
, using the identity (see Appendix)
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
⟨
(
F
˙
−
⟨
F
˙
⟩
)
⋅
(
P
−
⟨
P
⟩
)
⟩
{\displaystyle \langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle =\langle ({\dot {\boldsymbol {F}}}-\langle {\dot {\boldsymbol {F}}}\rangle )\cdot ({\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle )\rangle }
we can show that (see Appendix)
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
{
[
P
−
⟨
P
⟩
]
T
⋅
N
}
dA
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
{
[
P
−
⟨
P
⟩
]
T
⋅
N
}
dA
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes \left\{[{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]^{T}\cdot \mathbf {N} \right\}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes \left\{[{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]^{T}\cdot \mathbf {N} \right\}~{\text{dA}}~.\end{aligned}}}
Linear boundary velocities/displacements
edit
If a linear velocity field is prescribed on the boundary
∂
Ω
0
{\displaystyle \partial {\Omega }_{0}}
,
we can express this field as
x
˙
(
X
,
t
)
=
G
˙
(
t
)
⋅
X
∀
X
∈
∂
Ω
0
.
{\displaystyle {\dot {\mathbf {x} }}(\mathbf {X} ,t)={\dot {\boldsymbol {G}}}(t)\cdot \mathbf {X} \qquad \qquad \forall \mathbf {X} \in \partial {\Omega }_{0}~.}
Now,
⟨
F
˙
⟩
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
N
dA
=
1
V
0
∫
∂
Ω
0
(
G
˙
⋅
X
)
⊗
N
dA
=
G
˙
⋅
(
1
V
0
∫
∂
Ω
0
X
⊗
N
dA
)
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes \mathbf {N} ~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}({\dot {\boldsymbol {G}}}\cdot \mathbf {X} )\otimes \mathbf {N} ~{\text{dA}}\\&={\dot {\boldsymbol {G}}}\cdot \left({\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes \mathbf {N} ~{\text{dA}}\right)~.\end{aligned}}}
Recall that
∫
Ω
0
∇
0
X
dV
=
∫
∂
Ω
0
X
⊗
N
dA
.
{\displaystyle \int _{\Omega _{0}}{\boldsymbol {\nabla }}_{0}~\mathbf {X} ~{\text{dV}}=\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes \mathbf {N} ~{\text{dA}}~.}
Therefore,
⟨
F
˙
⟩
=
G
˙
⋅
(
1
V
0
∫
Ω
0
∇
0
X
dA
)
=
G
˙
⋅
(
1
V
0
∫
Ω
0
1
dA
)
=
G
˙
.
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\rangle &={\dot {\boldsymbol {G}}}\cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {\nabla }}_{0}~\mathbf {X} ~{\text{dA}}\right)\\&={\dot {\boldsymbol {G}}}\cdot \left({\cfrac {1}{V_{0}}}\int _{\Omega _{0}}{\boldsymbol {\mathit {1}}}~{\text{dA}}\right)={\dot {\boldsymbol {G}}}~.\end{aligned}}}
Hence,
⟨
F
˙
⟩
=
G
˙
⟹
x
˙
−
⟨
F
˙
⟩
⋅
X
=
0
.
{\displaystyle \langle {\dot {\boldsymbol {F}}}\rangle ={\dot {\boldsymbol {G}}}\qquad \implies \qquad {\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} =\mathbf {0} ~.}
Then,
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
⟨
F
˙
⟩
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
=
1
V
0
∫
∂
Ω
0
[
x
˙
−
G
˙
⋅
X
]
⊗
(
P
T
⋅
N
)
dA
=
0
{\displaystyle {\begin{aligned}\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-\langle {\dot {\boldsymbol {F}}}\rangle \cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}[{\dot {\mathbf {x} }}-{\dot {\boldsymbol {G}}}\cdot \mathbf {X} ]\otimes ({\boldsymbol {P}}^{T}\cdot \mathbf {N} )~{\text{dA}}=\mathbf {0} \end{aligned}}}
Hence,
⟨
F
˙
⋅
P
⟩
=
⟨
F
˙
⟩
⋅
⟨
P
⟩
.
{\displaystyle {\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle =\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ~.}}
Similarly, if a linear displacement field is prescribed on the
boundary such that
u
(
X
,
t
)
=
G
(
t
)
⋅
X
−
X
⟹
x
(
X
)
=
G
(
t
)
⋅
X
∀
X
∈
∂
Ω
0
{\displaystyle \mathbf {u} (\mathbf {X} ,t)={\boldsymbol {G}}(t)\cdot \mathbf {X} -\mathbf {X} \qquad \implies \qquad \mathbf {x} (\mathbf {X} )={\boldsymbol {G}}(t)\cdot \mathbf {X} \qquad \qquad \forall \mathbf {X} \in \partial {\Omega }_{0}}
we can show that
⟨
F
⟩
=
G
⟹
x
−
⟨
F
⟩
⋅
X
=
0
.
{\displaystyle \langle {\boldsymbol {F}}\rangle ={\boldsymbol {G}}\qquad \implies \qquad \mathbf {x} -\langle {\boldsymbol {F}}\rangle \cdot \mathbf {X} =\mathbf {0} ~.}
This leads to the equality
⟨
F
⋅
P
⟩
=
⟨
F
⟩
⋅
⟨
P
⟩
.
{\displaystyle {\langle {\boldsymbol {F}}\cdot {\boldsymbol {P}}\rangle =\langle {\boldsymbol {F}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ~.}}
Recall that, the average Kirchhoff stress is given by
⟨
τ
¯
⟩
=
⟨
F
⟩
⋅
⟨
P
⟩
{\displaystyle \langle {\overline {\boldsymbol {\tau }}}\rangle =\langle {\boldsymbol {F}}\rangle \cdot \langle {\boldsymbol {P}}\rangle }
.
Therefore, if a uniform boundary displacement is prescribed, we
have
⟨
τ
¯
⟩
=
⟨
F
⟩
⋅
⟨
P
⟩
=
⟨
F
⋅
P
⟩
=
⟨
τ
⟩
{\displaystyle \langle {\overline {\boldsymbol {\tau }}}\rangle =\langle {\boldsymbol {F}}\rangle \cdot \langle {\boldsymbol {P}}\rangle =\langle {\boldsymbol {F}}\cdot {\boldsymbol {P}}\rangle =\langle {\boldsymbol {\tau }}\rangle }
or,
⟨
τ
¯
⟩
=
⟨
τ
⟩
.
{\displaystyle {\langle {\overline {\boldsymbol {\tau }}}\rangle =\langle {\boldsymbol {\tau }}\rangle ~.}}
A uniform boundary traction field in the reference configuration can be represented as
T
¯
(
X
,
t
)
=
G
T
(
t
)
⋅
N
(
X
)
∀
X
∈
∂
Ω
0
.
{\displaystyle {\bar {\mathbf {T} }}(\mathbf {X} ,t)={\boldsymbol {G}}^{T}(t)\cdot \mathbf {N} (\mathbf {X} )\qquad \forall ~\mathbf {X} \in \partial {\Omega }_{0}~.}
Now,
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
X
⊗
T
¯
dA
=
1
V
0
∫
∂
Ω
0
X
⊗
(
G
T
⋅
N
dA
=
(
1
V
0
∫
∂
Ω
0
X
⊗
N
dA
)
⋅
G
=
1
⋅
G
=
G
.
{\displaystyle {\begin{aligned}\langle {\boldsymbol {P}}\rangle &={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes {\bar {\mathbf {T} }}~{\text{dA}}\\&={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes ({\boldsymbol {G}}^{T}\cdot \mathbf {N} ~{\text{dA}}\\&=\left({\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}\mathbf {X} \otimes \mathbf {N} ~{\text{dA}}\right)\cdot {\boldsymbol {G}}\\&={\boldsymbol {\mathit {1}}}\cdot {\boldsymbol {G}}={\boldsymbol {G}}~.\end{aligned}}}
Since the surface tractions are related to the nominal stress by
T
¯
(
X
,
t
)
=
P
T
(
X
,
t
)
⋅
N
(
X
)
{\displaystyle {\bar {\mathbf {T} }}(\mathbf {X} ,t)={\boldsymbol {P}}^{T}(\mathbf {X} ,t)\cdot \mathbf {N} (\mathbf {X} )}
, we must have
⟨
P
⟩
=
P
.
{\displaystyle \langle {\boldsymbol {P}}\rangle ={\boldsymbol {P}}~.}
Therefore,
⟨
F
˙
⋅
P
⟩
−
⟨
F
˙
⟩
⋅
⟨
P
⟩
=
1
V
0
∫
∂
Ω
0
x
˙
⊗
{
[
P
−
⟨
P
⟩
]
T
⋅
N
}
dA
=
0
{\displaystyle \langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle -\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ={\cfrac {1}{V_{0}}}\int _{\partial {\Omega }_{0}}{\dot {\mathbf {x} }}\otimes \left\{[{\boldsymbol {P}}-\langle {\boldsymbol {P}}\rangle ]^{T}\cdot \mathbf {N} \right\}~{\text{dA}}=\mathbf {0} }
or,
⟨
F
˙
⋅
P
⟩
=
⟨
F
˙
⟩
⋅
⟨
P
⟩
.
{\displaystyle {\langle {\dot {\boldsymbol {F}}}\cdot {\boldsymbol {P}}\rangle =\langle {\dot {\boldsymbol {F}}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ~.}}
Similarly,
⟨
F
⋅
P
⟩
=
⟨
F
⟩
⋅
⟨
P
⟩
.
{\displaystyle {\langle {\boldsymbol {F}}\cdot {\boldsymbol {P}}\rangle =\langle {\boldsymbol {F}}\rangle \cdot \langle {\boldsymbol {P}}\rangle ~.}}
Hence, using the same argument as for the previous case, we have
⟨
τ
¯
⟩
=
⟨
τ
⟩
.
{\displaystyle {\langle {\overline {\boldsymbol {\tau }}}\rangle =\langle {\boldsymbol {\tau }}\rangle ~.}}