Completion status : this resource is a stub, which means that pretty much nothing has been done yet.
P3.23, Beer 2012
On our honor, we did this problem on our own, without looking at the solutions in previous semesters or other online solutions.
Under normal operating conditions a motor exerts a torque of magnitude
T
F
{\displaystyle T_{F}}
=1200 lb*in. at F.
r
D
{\displaystyle r_{D}}
=8in.,
r
G
{\displaystyle r_{G}}
=3in., and the allowable shearing stress is 10.5 ksi in each shaft.
Determine the required diameter of (a) shaft CDE, (b) shaft FGH.
FBD
We can write an equilibrium equation: The moment about the center point D.
∑
M
D
=
0
=
T
E
−
F
(
r
D
)
{\displaystyle \sum M_{D}=0=T_{E}-F(r_{D})}
⇒
F
=
T
E
r
D
{\displaystyle \Rightarrow F={\frac {T_{E}}{r_{D}}}}
FBD
We can write an equilibrium equation: The moment about the center point G.
∑
M
G
=
0
=
T
F
−
F
(
r
G
)
{\displaystyle \sum M_{G}=0=T_{F}-F(r_{G})}
⇒
F
=
T
F
r
G
{\displaystyle \Rightarrow F={\frac {T_{F}}{r_{G}}}}
(a)
FBD
Now we set the two Forces (F) equal to each other and solve.
T
E
r
D
=
T
F
r
G
⇒
T
E
=
T
F
∗
r
D
r
G
=
1200
l
b
∗
i
n
∗
8
i
n
3
i
n
=
3200
l
b
∗
i
n
{\displaystyle {\frac {T_{E}}{r_{D}}}={\frac {T_{F}}{r_{G}}}\Rightarrow T_{E}={\frac {T_{F}*r_{D}}{r_{G}}}={\frac {1200lb*in*8in}{3in}}=3200lb*in}
Solve
τ
m
a
x
{\displaystyle \tau _{max}}
τ
m
a
x
=
T
E
∗
C
D
J
⇒
C
D
=
2
T
E
π
τ
m
a
x
3
=
2
∗
3200
l
b
∗
i
n
π
10.5
∗
10
3
l
b
i
n
2
3
=
0.58
i
n
{\displaystyle \tau _{max}={\frac {T_{E}*C_{D}}{J}}\Rightarrow C_{D}={\sqrt[{3}]{\frac {2T_{E}}{\pi \tau _{max}}}}={\sqrt[{3}]{\frac {2*3200lb*in}{\pi 10.5*10^{3}{\frac {lb}{in^{2}}}}}}=0.58in}
Solve for the diameter of shaft CDE
d
D
=
2
∗
C
D
=
2
∗
0.58
i
n
=
1.158
i
n
{\displaystyle d_{D}=2*C_{D}=2*0.58in=1.158in}
(b)
FBD
Solve
τ
m
a
x
{\displaystyle \tau _{max}}
τ
m
a
x
=
T
F
∗
C
F
J
⇒
C
F
=
2
T
F
π
τ
m
a
x
3
=
2
∗
1200
l
b
∗
i
n
π
10.5
∗
10
3
l
b
i
n
2
3
=
0.417
i
n
{\displaystyle \tau _{max}={\frac {T_{F}*C_{F}}{J}}\Rightarrow C_{F}={\sqrt[{3}]{\frac {2T_{F}}{\pi \tau _{max}}}}={\sqrt[{3}]{\frac {2*1200lb*in}{\pi 10.5*10^{3}{\frac {lb}{in^{2}}}}}}=0.417in}
Solve for the diameter of shaft FGH
d
F
=
2
∗
C
F
=
2
∗
0.42
i
n
=
0.835
i
n
{\displaystyle d_{F}=2*C_{F}=2*0.42in=0.835in}
P3.25, Beer 2012
On our honor, we did this problem on our own, without looking at the solutions in previous semesters or other online solutions.
The two solid shafts are connected by gears as shown and are made of steel for which the allowable shearing stress is 8500 psi. A torque of magnitude
T
C
{\displaystyle T_{C}}
=5 kip*in. is applied at C and the assembly is in equilibrium.
Determine the required diameter of (a) shaft BC, (b) shaft EF.
First sum the moments around gears A and E
∑
M
A
=
F
A
∗
R
C
+
T
C
{\displaystyle \sum M_{A}=F_{A}*R_{C}+T_{C}}
∑
M
D
=
F
D
∗
R
F
+
T
F
{\displaystyle \sum M_{D}=F_{D}*R_{F}+T_{F}}
Solve for F
F
=
T
R
{\displaystyle F={\frac {T}{R}}}
Sum the Forces
∑
F
=
0
=
F
C
+
F
F
=
T
C
R
A
+
T
F
R
E
{\displaystyle \sum F=0=F_{C}+F_{F}={\frac {T_{C}}{R_{A}}}+{\frac {T_{F}}{R_{E}}}}
Solve for
T
F
{\displaystyle T_{F}}
T
F
=
−
T
C
∗
R
E
R
A
=
−
5
k
i
p
i
n
∗
2.5
i
n
4
i
n
=
−
3.125
k
i
p
∗
i
n
{\displaystyle T_{F}={\frac {-T_{C}*R_{E}}{R_{A}}}={\frac {-5kipin*2.5in}{4in}}=-3.125kip*in}
The magnitude of
T
F
{\displaystyle T_{F}}
= 3.125 kip*in
Use the formula for
τ
m
a
x
{\displaystyle \tau _{max}}
to solve for the radius
τ
m
a
x
=
T
∗
r
J
=
2
∗
T
π
∗
r
3
{\displaystyle \tau _{max}={\frac {T*r}{J}}={\frac {2*T}{\pi *r^{3}}}}
r
3
=
2
∗
T
π
∗
τ
m
a
x
{\displaystyle r^{3}={\frac {2*T}{\pi *\tau _{max}}}}
r
=
(
2
∗
T
π
∗
τ
m
a
x
)
1
/
3
{\displaystyle r=({\frac {2*T}{\pi *\tau _{max}}})^{1/3}}
Input the Given values into the equation for the radius
d
C
=
2
∗
r
C
=
2
∗
(
2
∗
T
C
π
∗
τ
m
a
x
)
1
/
3
=
2
∗
(
2
∗
5000
l
b
∗
i
n
π
∗
8500
p
s
i
)
1
/
3
=
1.44
i
n
{\displaystyle d_{C}=2*r_{C}=2*({\frac {2*T_{C}}{\pi *\tau _{max}}})^{1/3}=2*({\frac {2*5000lb*in}{\pi *8500psi}})^{1/3}=1.44in}
d
F
=
2
∗
r
F
=
2
∗
(
2
∗
T
F
π
∗
τ
m
a
x
)
1
/
3
=
2
∗
(
2
∗
3125
l
b
∗
i
n
π
∗
8500
p
s
i
)
1
/
3
=
1.233
i
n
{\displaystyle d_{F}=2*r_{F}=2*({\frac {2*T_{F}}{\pi *\tau _{max}}})^{1/3}=2*({\frac {2*3125lb*in}{\pi *8500psi}})^{1/3}=1.233in}