Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Matrix/2 0 5 0 -1 0 8 0 5/Eigenspaces/Exercise
Language
Watch
Edit
Determine the eigenvalues and the eigenspaces of the linear mapping
φ
:
R
3
⟶
R
3
,
v
⟼
M
v
,
{\displaystyle \varphi \colon \mathbb {R} ^{3}\longrightarrow \mathbb {R} ^{3},v\longmapsto Mv,}
given by the matrix
M
=
(
2
0
5
0
−
1
0
8
0
5
)
.
{\displaystyle {}M={\begin{pmatrix}2&0&5\\0&-1&0\\8&0&5\end{pmatrix}}\,.}
Create a solution