The prerequisites are in two areas of mathematics:
Complex analysis: contour integrals of complex analytic functions on
C
{\displaystyle \mathbb {C} }
.
Lie algebras and their representations.
MICA: Integrating a complex analytic function
edit
For
a
,
b
∈
C
{\displaystyle a,b\in \mathbb {C} }
let us define
f
(
a
,
b
|
x
)
=
1
(
x
4
+
a
4
)
(
x
2
+
b
2
)
2
,
g
(
a
,
b
)
=
∫
−
∞
∞
f
(
a
,
b
|
x
)
d
x
{\displaystyle f(a,b|x)={\frac {1}{(x^{4}+a^{4})(x^{2}+b^{2})^{2}}}\quad ,\quad g(a,b)=\int _{-\infty }^{\infty }f(a,b|x)dx}
What are the poles and residues of
f
(
a
,
b
|
x
)
{\displaystyle f(a,b|x)}
as a function of
x
{\displaystyle x}
?
Compute
g
(
a
,
b
)
{\displaystyle g(a,b)}
and discuss its analytic properties.
MARE: A Lie algebra and its representations
edit
Consider a finite-dimensional Lie algebra
g
{\displaystyle {\mathfrak {g}}}
, with a basis
t
a
{\displaystyle t^{a}}
obeying commutation relations
[
t
a
,
t
b
]
=
f
c
a
b
t
c
{\displaystyle [t^{a},t^{b}]=f_{c}^{ab}t^{c}}
. For
ρ
{\displaystyle \rho }
a representation of
g
{\displaystyle {\mathfrak {g}}}
, we define
g
a
b
=
T
r
ρ
(
t
a
t
b
)
,
K
=
g
a
b
−
1
t
a
t
b
{\displaystyle g^{ab}=\mathrm {Tr} _{\rho }(t^{a}t^{b})\quad ,\quad K=g_{ab}^{-1}t^{a}t^{b}}
assuming the matrix
g
a
b
{\displaystyle g^{ab}}
is invertible.
Show that
K
{\displaystyle K}
belongs to the center of the universal enveloping algebra of
g
{\displaystyle {\mathfrak {g}}}
.
Compute
K
{\displaystyle K}
for
g
=
s
l
2
{\displaystyle {\mathfrak {g}}={\mathfrak {sl}}_{2}}
and
ρ
=
R
2
{\displaystyle \rho =R_{2}}
the fundamental representation, i.e. the irreducible representation of dimension 2. Use a basis
J
0
,
J
+
,
J
−
{\displaystyle J^{0},J^{+},J^{-}}
such that
[
J
0
,
J
±
]
=
±
J
±
{\displaystyle [J^{0},J^{\pm }]=\pm J^{\pm }}
and
[
J
+
,
J
−
]
=
2
J
0
{\displaystyle [J^{+},J^{-}]=2J^{0}}
.
For which values of
j
∈
C
{\displaystyle j\in \mathbb {C} }
does
s
l
2
{\displaystyle {\mathfrak {sl}}_{2}}
have an irreducible representation
V
j
{\displaystyle V_{j}}
where
J
0
{\displaystyle J^{0}}
has the eigenvalues
S
p
e
c
V
j
(
J
0
)
=
j
+
N
{\displaystyle \mathrm {Spec} _{V_{j}}(J^{0})=j+\mathbb {N} }
?
Compute the value of
K
{\displaystyle K}
in
R
2
{\displaystyle R_{2}}
and
V
j
{\displaystyle V_{j}}
. Diagonalize
K
{\displaystyle K}
and
J
0
{\displaystyle J^{0}}
in
R
2
⊗
V
j
{\displaystyle R_{2}\otimes V_{j}}
, and deduce
R
2
⊗
V
j
=
⊕
±
V
j
±
1
2
{\displaystyle R_{2}\otimes V_{j}=\oplus _{\pm }V_{j\pm {\frac {1}{2}}}}
.
By induction on
k
∈
N
{\displaystyle k\in \mathbb {N} }
, decompose
R
2
⊗
k
{\displaystyle R_{2}^{\otimes k}}
into irreducible representations. This should include an irreducible representation
R
k
+
1
{\displaystyle R_{k+1}}
of dimension
k
+
1
{\displaystyle k+1}
. Compute
S
p
e
c
R
k
(
J
0
)
{\displaystyle \mathrm {Spec} _{R_{k}}(J^{0})}
, compute
R
k
1
⊗
R
k
2
{\displaystyle R_{k_{1}}\otimes R_{k_{2}}}
and compute
R
k
⊗
V
j
{\displaystyle R_{k}\otimes V_{j}}
.
Let
W
{\displaystyle W}
be the 2-dimensional representation with a basis
(
v
,
J
0
v
)
{\displaystyle (v,J^{0}v)}
such that
(
J
0
)
2
v
=
J
±
v
=
0
{\displaystyle (J^{0})^{2}v=J^{\pm }v=0}
. Show that
W
{\displaystyle W}
is reducible but indecomposable. Same question for
W
⊗
R
k
{\displaystyle W\otimes R_{k}}
and
W
⊗
V
j
{\displaystyle W\otimes V_{j}}
. What are the submodules of
W
⊗
W
{\displaystyle W\otimes W}
?