Linear regression
The first step to understanding linear regression is to make sure you understand linear correlation.
Regression examines the relationship between two variables by determining the line of best fit (on a scatterplot). The properties of this line of best fit are determined as the slope (b) and where it touches the Y-axis (a).
Regression involves:
- A predictor (X) variable, or an independent variable (IV), shown on the X-axis
- An outcome (Y) variables, or a dependent variable (DV), shown on the Y-axis
The generic equation for a simple linear regression is:
See also
edit- Linear regression (Wikipedia)
- Multiple linear regression