Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Linear mapping/Kernel/2 3 0 -1/4 2 2 5/Exercise
Language
Watch
Edit
Determine the kernel of the linear map
φ
:
R
4
⟶
R
2
,
{\displaystyle \varphi \colon \mathbb {R} ^{4}\longrightarrow \mathbb {R} ^{2},}
given by the matrix
M
=
(
2
3
0
−
1
4
2
2
5
)
.
{\displaystyle {}M={\begin{pmatrix}2&3&0&-1\\4&2&2&5\end{pmatrix}}\,.}
To solution