Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Linear mapping/Determine image and kernel/Exercise
Language
Watch
Edit
Determine the image and the kernel of the linear map
f
:
R
4
⟶
R
4
,
(
x
1
x
2
x
3
x
4
)
⟼
(
1
3
4
−
1
2
5
7
−
1
−
1
2
3
−
2
−
2
0
0
−
2
)
⋅
(
x
1
x
2
x
3
x
4
)
.
{\displaystyle f\colon \mathbb {R} ^{4}\longrightarrow \mathbb {R} ^{4},{\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix}}\longmapsto {\begin{pmatrix}1&3&4&-1\\2&5&7&-1\\-1&2&3&-2\\-2&0&0&-2\end{pmatrix}}\cdot {\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\end{pmatrix}}.}
Create a solution