Exercise for the break
Determine the
dimension
of the space of all
m
×
n
{\displaystyle {}m\times n}
-matrices .
Exercises
Determine the
dimension
of the solution space of the
linear system
4
x
−
3
y
+
7
z
+
5
u
−
v
=
0
{\displaystyle {}4x-3y+7z+5u-v=0\,}
and
y
+
6
z
−
10
u
+
3
v
=
0
{\displaystyle {}y+6z-10u+3v=0\,}
in the variables
x
,
y
,
z
,
u
,
v
{\displaystyle {}x,y,z,u,v}
.
Let
K
{\displaystyle {}K}
be a
field ,
and
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Show that the set of all
diagonal matrices
is a
linear subspace
in the space of all
n
×
n
{\displaystyle {}n\times n}
-matrices
over
K
{\displaystyle {}K}
, and determine its
dimension .
An
n
×
n
{\displaystyle {}n\times n}
-matrix
M
=
(
a
i
j
)
1
≤
i
,
j
≤
n
{\displaystyle {}M={\left(a_{ij}\right)}_{1\leq i,j\leq n}\,}
is called
symmetric
if
a
i
j
=
a
j
i
{\displaystyle {}a_{ij}=a_{ji}}
holds for all
i
,
j
{\displaystyle {}i,j}
.
Show that the set of all
symmetric
n
×
n
{\displaystyle {}n\times n}
-matrices
is a
linear subspace
in the space of all
n
×
n
{\displaystyle {}n\times n}
-matrices, and determine its
dimension .
Let
K
{\displaystyle {}K}
be a
field ,
and
n
∈
N
{\displaystyle {}n\in \mathbb {N} }
.
Show that the set of all
upper triangular matrices
is a
linear subspace
in the space of all
n
×
n
{\displaystyle {}n\times n}
-matrices
over
K
{\displaystyle {}K}
, and determine its
dimension .
Let
K
{\displaystyle {}K}
be a field, and let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space of dimension
n
=
dim
K
(
V
)
{\displaystyle {}n=\dim _{K}{\left(V\right)}}
.
Suppose that
n
{\displaystyle {}n}
vectors
v
1
,
…
,
v
n
{\displaystyle {}v_{1},\ldots ,v_{n}}
in
V
{\displaystyle {}V}
are given. Prove that the following facts are equivalent.
v
1
,
…
,
v
n
{\displaystyle {}v_{1},\ldots ,v_{n}}
form a basis for
V
{\displaystyle {}V}
.
v
1
,
…
,
v
n
{\displaystyle {}v_{1},\ldots ,v_{n}}
form a system of generators for
V
{\displaystyle {}V}
.
v
1
,
…
,
v
n
{\displaystyle {}v_{1},\ldots ,v_{n}}
are linearly independent.
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space
of finite
dimension .
Let
U
⊆
V
{\displaystyle {}U\subseteq V}
denote a
linear subspace
with
dim
K
(
U
)
=
dim
K
(
V
)
{\displaystyle {}\dim _{K}{\left(U\right)}=\dim _{K}{\left(V\right)}}
.
Show that
U
=
V
{\displaystyle {}U=V}
holds.
Let
a
,
b
,
c
∈
R
{\displaystyle {}a,b,c\in \mathbb {R} }
be real numbers. We consider the three vectors
(
a
b
c
)
,
(
c
a
b
)
,
(
b
c
a
)
∈
R
3
.
{\displaystyle {}{\begin{pmatrix}a\\b\\c\end{pmatrix}},\,{\begin{pmatrix}c\\a\\b\end{pmatrix}},\,{\begin{pmatrix}b\\c\\a\end{pmatrix}}\in \mathbb {R} ^{3}\,.}
Give examples for
a
,
b
,
c
{\displaystyle {}a,b,c}
such that the linear subspace generated by these vectors has dimension
0
,
1
,
2
,
3
{\displaystyle {}0,1,2,3}
.
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
{\displaystyle {}V}
and
W
{\displaystyle {}W}
be two
finite-dimensional
K
{\displaystyle {}K}
-vector spaces
with
dim
K
(
V
)
=
n
{\displaystyle {}\dim _{K}{\left(V\right)}=n\,}
and
dim
K
(
W
)
=
m
.
{\displaystyle {}\dim _{K}{\left(W\right)}=m\,.}
What is the
dimension
of the
Cartesian product
V
×
W
{\displaystyle {}V\times W}
?
Let
W
{\displaystyle {}W}
be an
n
{\displaystyle {}n}
-dimensional
K
{\displaystyle {}K}
-vector space
(
K
{\displaystyle {}K}
a field),
and let
U
,
V
⊆
W
{\displaystyle {}U,V\subseteq W}
be
linear subspaces
of
dimension
dim
K
(
U
)
=
r
{\displaystyle {}\dim _{K}{\left(U\right)}=r}
and
dim
K
(
V
)
=
s
{\displaystyle {}\dim _{K}{\left(V\right)}=s}
.
Suppose that
r
+
s
>
n
{\displaystyle {}r+s>n}
holds. Show that
U
∩
V
≠
0
{\displaystyle {}U\cap V\neq 0}
.
Let
K
{\displaystyle {}K}
be a field, and let
K
[
X
]
{\displaystyle {}K[X]}
denote the
polynomial ring
over
K
{\displaystyle {}K}
. Let
d
∈
N
{\displaystyle {}d\in \mathbb {N} }
.
Show that the set of all polynomials of degree
≤
d
{\displaystyle {}\leq d}
is a
finite-dimensional
linear subspace
of
K
[
X
]
{\displaystyle {}K[X]}
. What is its
dimension ?
Show that the set of all real
polynomials
of
degree
≤
4
{\displaystyle {}\leq 4}
that have a zero for
−
2
{\displaystyle {}-2}
and for
3
{\displaystyle {}3}
, forms a
finite-dimensional
linear subspace
in
R
[
X
]
{\displaystyle {}\mathbb {R} [X]}
. Determine its
dimension .
Let
V
{\displaystyle {}V}
be a finite-dimensional vector space over the complex numbers, and let
v
1
,
…
,
v
n
{\displaystyle {}v_{1},\ldots ,v_{n}}
be a
basis
of
V
{\displaystyle {}V}
. Prove that the family of vectors
v
1
,
…
,
v
n
and
i
v
1
,
…
,
i
v
n
{\displaystyle v_{1},\ldots ,v_{n}{\text{ and }}{\mathrm {i} }v_{1},\ldots ,{\mathrm {i} }v_{n}}
forms a basis for
V
{\displaystyle {}V}
, considered as a real vector space.
Consider the standard basis
e
1
,
e
2
,
e
3
,
e
4
{\displaystyle {}e_{1},e_{2},e_{3},e_{4}}
in
R
4
{\displaystyle {}\mathbb {R} ^{4}}
and the three vectors
(
1
3
0
−
4
)
,
(
2
1
5
7
)
and
(
−
4
9
−
5
1
)
.
{\displaystyle {\begin{pmatrix}1\\3\\0\\-4\end{pmatrix}},\,{\begin{pmatrix}2\\1\\5\\7\end{pmatrix}}{\text{ and }}{\begin{pmatrix}-4\\9\\-5\\1\end{pmatrix}}.}
Prove that these vectors are linearly independent, and extend them to a basis by adding an appropriate standard vector, as shown in the
base exchange theorem .
Can one take any standard vector?
We consider the
linear equations
9
x
−
8
y
+
7
z
−
8
u
+
4
v
=
0
,
{\displaystyle {}9x-8y+7z-8u+4v=0\,,}
3
y
+
7
z
−
4
u
+
6
v
=
0
,
{\displaystyle {}\,\,\,\,\,\,\,\,\,\,\,\,\,\,3y+7z-4u+6v=0\,,}
−
2
z
+
5
u
+
7
v
=
0
,
{\displaystyle {}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-2z+5u+7v=0\,,}
over
R
{\displaystyle {}\mathbb {R} }
.
Determine a
basis
b
1
{\displaystyle {}{\mathfrak {b}}_{1}}
of the solution space of this linear system.
Extend the basis
b
1
{\displaystyle {}{\mathfrak {b}}_{1}}
to a basis
b
2
{\displaystyle {}{\mathfrak {b}}_{2}}
of the solution space of the linear system consisting of the first two equations.
Extend the basis
b
2
{\displaystyle {}{\mathfrak {b}}_{2}}
to a basis
b
3
{\displaystyle {}{\mathfrak {b}}_{3}}
of the solution space of the linear system consisting of the first equation alone.
Extend the basis
b
3
{\displaystyle {}{\mathfrak {b}}_{3}}
to a basis
b
4
{\displaystyle {}{\mathfrak {b}}_{4}}
of the total space
R
5
{\displaystyle {}\mathbb {R} ^{5}}
.
We consider the last digit in the basic multiplication table as a family of
9
{\displaystyle {}9}
-tuples of length
9
{\displaystyle {}9}
, that is, the row vectors in the matrix
(
1
2
3
4
5
6
7
8
9
2
4
6
8
0
2
4
6
8
3
6
9
2
5
8
1
4
7
4
8
2
6
0
4
8
2
6
5
0
5
0
5
0
5
0
5
6
2
8
4
0
6
2
8
4
7
4
1
8
5
2
9
6
3
8
6
4
2
0
8
6
4
2
9
8
7
6
5
4
3
2
1
)
.
{\displaystyle {\begin{pmatrix}1&2&3&4&5&6&7&8&9\\2&4&6&8&0&2&4&6&8\\3&6&9&2&5&8&1&4&7\\4&8&2&6&0&4&8&2&6\\5&0&5&0&5&0&5&0&5\\6&2&8&4&0&6&2&8&4\\7&4&1&8&5&2&9&6&3\\8&6&4&2&0&8&6&4&2\\9&8&7&6&5&4&3&2&1\end{pmatrix}}.}
What is the
dimension
of the
linear subspace
in
R
9
{\displaystyle {}\mathbb {R} ^{9}}
generated by these tuples?
Let
K
{\displaystyle {}K}
be a
field ,
and let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space .
Show that
V
{\displaystyle {}V}
can not have a finite
basis
and an infinite basis.
The magic square in Dürer's picture Melencolia I.
In this sense, the matrix
(
c
0
⋯
0
0
c
⋱
⋮
⋮
⋱
⋱
0
0
⋯
0
c
)
{\displaystyle {\begin{pmatrix}c&0&\cdots &0\\0&c&\ddots &\vdots \\\vdots &\ddots &\ddots &0\\0&\cdots &0&c\end{pmatrix}}}
is, for every
c
∈
K
{\displaystyle {}c\in K}
,
a magic square.
Show that the set of all
linear-magic squares
of length
n
{\displaystyle {}n}
over a
field
K
{\displaystyle {}K}
is a
linear subspace
in the space of all
n
×
n
{\displaystyle {}n\times n}
-matrices .
Hand-in-exercises
Let
K
{\displaystyle {}K}
be a field, and let
V
{\displaystyle {}V}
be a
K
{\displaystyle {}K}
-vector space. Let
v
1
,
…
,
v
m
{\displaystyle {}v_{1},\ldots ,v_{m}}
be a family of vectors in
V
{\displaystyle {}V}
, and let
U
=
⟨
v
i
,
i
=
1
,
…
,
m
⟩
{\displaystyle {}U=\langle v_{i},\,i=1,\ldots ,m\rangle \,}
be the
linear subspace
they span. Prove that the family is linearly independent if and only if the dimension of
U
{\displaystyle {}U}
is exactly
m
{\displaystyle {}m}
.
a) Determine the
dimension
of the solution space of the
linear system
2
x
+
5
y
+
7
z
+
4
u
−
3
v
+
2
w
=
0
{\displaystyle {}2x+5y+7z+4u-3v+2w=0\,}
4
x
+
9
y
+
6
z
+
5
u
−
v
+
w
=
0
{\displaystyle {}4x+9y+6z+5u-v+w=0\,}
7
x
+
8
y
−
3
z
+
u
+
3
v
+
3
w
=
0
{\displaystyle {}7x+8y-3z+u+3v+3w=0\,}
−
x
+
6
y
+
16
z
+
8
u
−
7
v
=
0
{\displaystyle {}-x+6y+16z+8u-7v=0\,}
in the variables
x
,
y
,
z
,
u
,
v
,
w
{\displaystyle {}x,y,z,u,v,w}
.
b) What is the dimension of the solution space if we consider the system in the variables
x
,
y
,
z
,
u
,
v
,
w
,
r
,
s
{\displaystyle {}x,y,z,u,v,w,r,s}
?
Show that the set of all real
polynomials
of
degree
≤
6
{\displaystyle {}\leq 6}
that have a zero at
−
1
{\displaystyle {}-1}
, at
0
{\displaystyle {}0}
and at
1
{\displaystyle {}1}
, is a
finite-dimensional
subspace
of
R
[
X
]
{\displaystyle {}\mathbb {R} [X]}
. Determine the
dimension
of this vector space.
Let
K
{\displaystyle {}K}
be a
field ,
and
n
∈
N
+
{\displaystyle {}n\in \mathbb {N} _{+}}
.
Determine the
dimension
of the space of all
linear-magic squares
of length
n
{\displaystyle {}n}
over
K
{\displaystyle {}K}
.
We consider the
linear equations
8
x
−
3
y
+
5
z
+
7
u
+
6
v
=
0
,
{\displaystyle {}8x-3y+5z+7u+6v=0\,,}
9
x
+
2
y
+
z
−
v
=
0
,
{\displaystyle {}9x+2y+\,\,z\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-v=0\,,}
7
y
−
z
+
4
u
=
0
,
{\displaystyle {}\,\,\,\,\,\,\,\,\,\,\,\,\,\,7y-\,\,z+4u\,\,\,\,\,\,\,\,\,\,\,\,\,\,=0\,,}
over
R
{\displaystyle {}\mathbb {R} }
.
Determine a
basis
b
1
{\displaystyle {}{\mathfrak {b}}_{1}}
of the solution space of this linear system.
Extend the basis
b
1
{\displaystyle {}{\mathfrak {b}}_{1}}
to a basis
b
2
{\displaystyle {}{\mathfrak {b}}_{2}}
of the solution space of the linear system consisting of the first two equations.
Extend the basis
b
2
{\displaystyle {}{\mathfrak {b}}_{2}}
to a basis
b
3
{\displaystyle {}{\mathfrak {b}}_{3}}
of the solution space of the linear system consisting of the first equation alone.
Extend the basis
b
3
{\displaystyle {}{\mathfrak {b}}_{3}}
to a basis
b
4
{\displaystyle {}{\mathfrak {b}}_{4}}
of the total space
R
5
{\displaystyle {}\mathbb {R} ^{5}}
.