Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Inverse trigonometric functions/Derivative/Fact/Proof
Language
Watch
Edit
<
Inverse trigonometric functions/Derivative/Fact
Proof
For example, for the arctangent, we have, due to
fact
,
(
arctan
x
)
′
=
1
1
cos
2
(
arctan
x
)
=
1
cos
2
(
arctan
x
)
+
sin
2
(
arctan
x
)
cos
2
(
arctan
x
)
=
1
1
+
tan
2
(
arctan
x
)
=
1
1
+
x
2
.
{\displaystyle {}{\begin{aligned}(\arctan x)^{\prime }&={\frac {1}{\frac {1}{\cos ^{2}(\arctan x)}}}\\&={\frac {1}{\frac {\cos ^{2}(\arctan x)+\sin ^{2}(\arctan x)}{\cos ^{2}(\arctan x)}}}\\&={\frac {1}{1+\tan ^{2}(\arctan x)}}\\&={\frac {1}{1+x^{2}}}.\end{aligned}}}
To fact