Find and plot the solution for the homogeneous L2-ODE-CC
y
″
(
x
)
−
10
y
′
(
x
)
+
25
y
(
x
)
=
0
{\displaystyle y''(x)-10y'(x)+25y(x)=0\!}
with initial conditions
y
(
0
)
=
1
{\displaystyle y(0)=1\!}
,and
y
′
(
0
)
=
0
{\displaystyle y'(0)=0\!}
Characteristic Equation
edit
λ
2
−
10
λ
+
25
=
0
{\displaystyle \lambda ^{2}-10\lambda +25=0\!}
(
λ
−
5
)
(
λ
−
5
)
=
0
{\displaystyle (\lambda -5)(\lambda -5)=0\!}
λ
=
5
{\displaystyle \lambda =5\!}
Homogeneous Solution
edit
The solution to a L2-ODE-CC with real double root is given by
y
(
x
)
=
c
1
e
λ
x
+
c
2
x
e
λ
x
{\displaystyle y(x)=c_{1}e^{\lambda x}+c_{2}xe^{\lambda x}\!}
First initial condition
y
(
0
)
=
1
{\displaystyle y(0)=1\!}
y
(
0
)
=
c
1
e
5
∗
0
+
c
2
∗
0
∗
e
5
∗
0
=
1
{\displaystyle y(0)=c_{1}e^{5*0}+c_{2}*0*e^{5*0}=1\!}
c
1
=
1
{\displaystyle c_{1}=1\!}
Second initial condition
y
′
(
0
)
=
0
{\displaystyle y'(0)=0\!}
d
d
x
y
(
x
)
=
y
′
(
x
)
=
5
e
5
x
+
c
2
e
5
x
(
5
x
+
1
)
{\displaystyle {\frac {d}{dx}}y(x)=y'(x)=5e^{5x}+c_{2}e^{5x}(5x+1)\!}
y
′
(
0
)
=
5
e
5
∗
0
+
c
2
e
5
∗
0
(
5
∗
0
+
1
)
=
0
{\displaystyle y'(0)=5e^{5*0}+c_{2}e^{5*0}(5*0+1)=0\!}
5
+
c
2
=
0
{\displaystyle 5+c_{2}=0\!}
c
2
=
−
5
{\displaystyle c_{2}=-5\!}
The solution to our L2-ODE-CC is
y
(
x
)
=
e
5
x
(
1
−
5
x
)
{\displaystyle y(x)=e^{5x}(1-5x)\!}
y
(
x
)
=
e
5
x
(
1
−
5
x
)
{\displaystyle y(x)=e^{5x}(1-5x)\!}
Egm4313.s12.team11.imponenti 00:30, 8 February 2012 (UTC)
Problem Statement (K 2011 p.59 pb. 3)
edit
Find a general solution. Check your answer by substitution.
y
″
+
6
y
′
+
8.96
y
=
0
{\displaystyle y''+6y'+8.96y=0\!}
We can write the above differential equation in the following form:
d
2
y
d
x
2
+
6
d
y
d
x
+
8.96
y
=
0
{\displaystyle {\frac {d^{2}y}{dx^{2}}}+6{\frac {dy}{dx}}+8.96y=0}
Let
d
d
x
=
λ
.
{\displaystyle {\frac {d}{dx}}=\lambda .}
The characteristic equation of the given DE is
λ
2
+
6
λ
+
8.96
=
0
{\displaystyle \lambda ^{2}+6\lambda +8.96=0\!}
Now, in order to solve for
λ
{\displaystyle \lambda }
, we can use the quadratic formula:
λ
=
−
(
6
)
±
(
6
)
2
−
4
(
1
)
(
8.96
)
2
(
1
)
{\displaystyle \lambda ={\frac {-(6)\pm {\sqrt {(6)^{2}-4(1)(8.96)}}}{2(1)}}}
λ
=
−
6
±
36
−
35.84
2
{\displaystyle \lambda ={\frac {-6\pm {\sqrt {36-35.84}}}{2}}}
λ
=
−
6
±
0.16
2
{\displaystyle \lambda ={\frac {-6\pm {\sqrt {0.16}}}{2}}}
λ
=
−
6
±
0.4
2
{\displaystyle \lambda ={\frac {-6\pm 0.4}{2}}}
Therefore, we have:
λ
1
=
−
6
+
0.4
2
=
−
5.8
2
=
−
2.8
{\displaystyle \lambda _{1}={\frac {-6+0.4}{2}}={\frac {-5.8}{2}}=-2.8}
and
λ
1
=
−
6
−
0.4
2
=
−
6.4
2
=
−
3.2
{\displaystyle \lambda _{1}={\frac {-6-0.4}{2}}={\frac {-6.4}{2}}=-3.2}
Thus, we have found that the general solution of the DE is actually:
y
=
c
1
e
−
2.8
x
+
c
2
e
−
3.2
x
{\displaystyle y=c_{1}e^{-2.8x}+c_{2}e^{-3.2x}\!}
Check:
To check if
y
{\displaystyle y}
is indeed the solution of the given DE, we can differentiate the
what we found to be the general solution.
d
y
d
x
=
y
′
=
−
2.8
x
c
1
e
−
2.8
x
+
−
3.2
x
c
2
e
−
3.2
x
{\displaystyle {\frac {dy}{dx}}=y'=-2.8xc_{1}e^{-2.8x}+-3.2xc_{2}e^{-3.2x}\!}
d
2
y
d
x
2
=
y
″
=
7.84
x
c
1
e
−
2.8
x
+
10.24
c
2
e
−
3.2
x
{\displaystyle {\frac {d^{2}y}{dx^{2}}}=y''=7.84xc_{1}e^{-2.8x}+10.24c_{2}e^{-3.2x}\!}
Substituting the values of
y
,
y
′
{\displaystyle y,y'}
and
y
″
{\displaystyle y''}
in the given equation, we get:
7.84
c
1
e
−
2.8
x
+
10.24
c
2
e
−
3.2
x
+
6
(
−
2.8
c
1
e
−
2.8
x
−
3.2
c
2
e
−
3.2
x
)
+
8.96
(
c
1
e
−
2.8
x
+
c
2
e
−
3.2
x
)
=
0
{\displaystyle 7.84c_{1}e^{-2.8x}+10.24c_{2}e^{-3.2x}+6(-2.8c_{1}e^{-2.8x}-3.2c_{2}e^{-3.2x})+8.96(c_{1}e^{-2.8x}+c_{2}e^{-3.2x})=0\!}
7.84
c
1
e
−
2.8
x
+
10.24
c
2
e
−
3.2
x
−
16.8
c
1
e
−
2.8
x
−
19.2
c
2
e
−
3.2
x
+
8.96
c
1
e
−
2.8
x
+
8.96
c
2
e
−
3.2
x
=
0
{\displaystyle 7.84c_{1}e^{-2.8x}+10.24c_{2}e^{-3.2x}-16.8c_{1}e^{-2.8x}-19.2c_{2}e^{-3.2x}+8.96c_{1}e^{-2.8x}+8.96c_{2}e^{-3.2x}=0\!}
and thus:
0
≡
0.
{\displaystyle 0\equiv 0.\!}
Therefore, the solution of the given DE is in fact:
y
=
c
1
e
−
2.8
x
+
c
2
e
−
3.2
x
{\displaystyle y=c_{1}e^{-2.8x}+c_{2}e^{-3.2x}\!}
Problem Statement (K 2011 p.59 pb. 4)
edit
Find a general solution to the given ODE. Check your answer by substituting into the original equation.
y
″
+
4
y
′
+
(
π
2
+
4
)
y
=
0
{\displaystyle {y}''+4{y}'+(\pi ^{2}+4)y=0\!}
The characteristic equation of this ODE is therefore:
λ
2
+
a
λ
+
b
=
λ
2
+
4
λ
+
(
π
2
+
4
)
=
0
{\displaystyle \lambda ^{2}+a\lambda +b=\lambda ^{2}+4\lambda +(\pi ^{2}+4)=0\!}
Evaluating the discriminant:
a
2
−
4
b
=
4
2
−
4
(
π
2
+
4
)
=
−
4
π
2
<
0
{\displaystyle a^{2}-4b=4^{2}-4(\pi ^{2}+4)=-4\pi ^{2}<0\!}
Therefore the equation has two complex conjugate roots and a general homogenous solution of the form:
y
=
e
−
a
x
/
2
(
A
c
o
s
(
ω
x
)
+
B
s
i
n
(
ω
x
)
)
{\displaystyle y=e^{-ax/2}(Acos(\omega x)+Bsin(\omega x))\!}
Where:
ω
=
b
−
1
4
a
2
=
π
2
+
4
−
1
4
(
4
)
2
=
π
2
=
π
{\displaystyle \omega ={\sqrt {b-{\frac {1}{4}}a^{2}}}={\sqrt {\pi ^{2}+4-{\frac {1}{4}}(4)^{2}}}={\sqrt {\pi ^{2}}}=\pi \!}
And finally we find the general homogenous solution:
y
=
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
{\displaystyle y=e^{-2x}(Acos(\pi x)+Bsin(\pi x))\!}
Check:
We found that:
y
=
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
{\displaystyle y=e^{-2x}(Acos(\pi x)+Bsin(\pi x))\!}
Differentiating
y
{\displaystyle y\!}
to obtain
y
′
{\displaystyle {y}'\!}
and
y
″
{\displaystyle {y}''\!}
respectively:
y
′
=
−
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
+
e
−
2
x
(
π
A
c
o
s
(
π
x
)
−
π
B
s
i
n
(
π
x
)
)
{\displaystyle {y}'=-2e^{-2x}(Acos(\pi x)+Bsin(\pi x))+e^{-2x}(\pi Acos(\pi x)-\pi Bsin(\pi x))\!}
y
′
=
−
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
+
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
{\displaystyle {y}'=-2e^{-2x}(Acos(\pi x)+Bsin(\pi x))+\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))\!}
y
″
=
4
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
−
2
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
−
2
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
−
π
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
{\displaystyle {y}''=4e^{-2x}(Acos(\pi x)+Bsin(\pi x))-2\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))-2\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))-\pi ^{2}e^{-2x}(Acos(\pi x)+Bsin(\pi x))\!}
y
″
=
4
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
−
4
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
−
π
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
{\displaystyle {y}''=4e^{-2x}(Acos(\pi x)+Bsin(\pi x))-4\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))-\pi ^{2}e^{-2x}(Acos(\pi x)+Bsin(\pi x))\!}
Substituting these equations into the original ODE yields:
4
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
−
4
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
−
π
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
{\displaystyle 4e^{-2x}(Acos(\pi x)+Bsin(\pi x))-4\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))-\pi ^{2}e^{-2x}(Acos(\pi x)+Bsin(\pi x))\!}
+
4
(
−
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
+
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
)
+
(
π
2
+
4
)
(
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
)
=
0
{\displaystyle +4(-2e^{-2x}(Acos(\pi x)+Bsin(\pi x))+\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x)))+(\pi ^{2}+4)(e^{-2x}(Acos(\pi x)+Bsin(\pi x)))=0\!}
4
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
−
4
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
−
π
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
{\displaystyle 4e^{-2x}(Acos(\pi x)+Bsin(\pi x))-4\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))-\pi ^{2}e^{-2x}(Acos(\pi x)+Bsin(\pi x))\!}
−
8
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
+
4
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
+
π
2
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
+
4
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
=
0
{\displaystyle -8e^{-2x}(Acos(\pi x)+Bsin(\pi x))+4\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))+\pi ^{2}e^{-2x}(Acos(\pi x)+Bsin(\pi x))+4e^{-2x}(Acos(\pi x)+Bsin(\pi x))=0\!}
(
4
−
8
+
4
)
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
+
(
−
4
+
4
)
π
e
−
2
x
(
A
c
o
s
(
π
x
)
−
B
s
i
n
(
π
x
)
)
+
(
π
2
−
π
2
)
e
−
2
x
(
A
c
o
s
(
π
x
)
+
B
s
i
n
(
π
x
)
)
=
0
{\displaystyle (4-8+4)e^{-2x}(Acos(\pi x)+Bsin(\pi x))+(-4+4)\pi e^{-2x}(Acos(\pi x)-Bsin(\pi x))+(\pi ^{2}-\pi ^{2})e^{-2x}(Acos(\pi x)+Bsin(\pi x))=0\!}
0
≡
0
{\displaystyle 0\equiv 0\!}
Therefore, the solution is correct.
--Gonzalo Perez
Report 2, Problem 2.5
edit
Solved by: Andrea Vargas
For the following spring-dashpot-mass system (in series) find the values for the parameters
k
,
c
,
m
{\displaystyle k,c,m\!}
knowing that the system has the double real root
λ
=
−
3
{\displaystyle \lambda =-3\!}
Previously, we have derived the following equation for such a system:
(From Sec 1 (d) , (3) p.1-5)
m
(
y
k
″
+
k
c
y
k
′
)
+
k
y
k
=
f
(
t
)
{\displaystyle m\left(y_{k}''+{\frac {k}{c}}y_{k}'\right)+ky_{k}=f(t)\!}
We can write this equation in standard form by diving through by
m
{\displaystyle m\!}
:
y
k
″
+
k
c
y
k
′
+
k
m
y
k
=
f
(
t
)
m
{\displaystyle y_{k}''+{\frac {k}{c}}y_{k}'+{\frac {k}{m}}y_{k}={\frac {f(t)}{m}}\!}
Here, we can take the coefficients of
y
k
′
{\displaystyle y_{k}'\!}
and
y
k
{\displaystyle y_{k}\!}
as
a
{\displaystyle a\!}
and
b
{\displaystyle b\!}
:
y
k
″
+
k
c
⏟
a
y
k
′
+
k
m
⏟
b
y
k
=
f
(
t
)
m
{\displaystyle y_{k}''+\underbrace {\frac {k}{c}} _{a}y_{k}'+\underbrace {\frac {k}{m}} _{b}y_{k}={\frac {f(t)}{m}}\!}
Next,considering the double real root:
λ
=
−
3
{\displaystyle \lambda =-3\!}
We can find the characteristic equation to be:
(
λ
+
3
)
2
=
λ
2
+
6
λ
+
9
=
0
{\displaystyle \left(\lambda +3\right)^{2}=\lambda ^{2}+6\lambda +9=0\!}
Which is in the form:
λ
2
+
a
λ
+
b
=
0
{\displaystyle \lambda ^{2}+a\lambda +b=0\!}
Then, we know that
a
=
6
{\displaystyle a=6\!}
and
b
=
9
{\displaystyle b=9\!}
:
Setting
a
{\displaystyle a\!}
and
b
{\displaystyle b\!}
from the first equation equal to these, we obtain:
k
c
=
6
a
n
d
k
m
=
9
{\displaystyle {\frac {k}{c}}=6\;and\;{\frac {k}{m}}=9\!}
Clearly, there is an infinite amount of solutions to this problem because we have 2 equations but 3 unknowns. This can be solved by fixing one of the values and finding the other two.
An example of fixing one of the constants to find the other two is provided here. By solving the simple equations above, we can illustrate how to find
k
,
c
,
m
{\displaystyle k,c,m\!}
. We had:
k
c
=
6
a
n
d
k
m
=
9
{\displaystyle {\frac {k}{c}}=6\;and\;{\frac {k}{m}}=9\!}
If we fix the mass to
m
=
10
k
g
{\displaystyle m=10\;kg\!}
. We find:
k
10
=
9
{\displaystyle {\frac {k}{10}}=9\!}
k
=
90
{\displaystyle k=90\!}
Then,
90
c
=
6
{\displaystyle {\frac {90}{c}}=6\!}
c
=
15
{\displaystyle c=15\!}
Finally, we obtain:
m
=
10
,
k
=
90
,
a
n
d
c
=
15
{\displaystyle m=10,\;k=90,\;and\;c=15\!}
--Andrea Vargas 21:44, 7 February 2012 (UTC)
Problem 2.7: McLaurin Series
edit
Find a general solution. Check your answer by substitution.
y
″
+
y
′
+
3.25
y
=
0
{\displaystyle y''+y'+3.25y=0\!}
Let:
λ
=
d
/
d
x
{\displaystyle \lambda =d/dx\!}
Characteristic Equation
edit
λ
2
+
λ
+
3.25
=
0
{\displaystyle \lambda ^{2}+\lambda +3.25=0\!}
Using the quadratic equation to find roots we get:
λ
1
=
−
1
+
i
(
12
)
2
{\displaystyle \lambda _{1}={\frac {-1+i{\sqrt {(}}12)}{2}}\!}
λ
2
=
−
1
−
i
(
12
)
2
{\displaystyle \lambda _{2}={\frac {-1-i{\sqrt {(}}12)}{2}}\!}
Therefore:
y
h
(
x
)
=
e
−
1
2
x
(
c
1
cos
(
x
3
)
+
c
2
sin
(
x
3
)
)
{\displaystyle y_{h}(x)=e^{-{\frac {1}{2}}x}(c_{1}\cos(x{\sqrt {3}})+c_{2}\sin(x{\sqrt {3}}))\!}
Check By Substitution
edit
y
′
(
x
)
=
−
1
2
e
−
1
2
x
(
c
1
cos
(
x
3
)
+
c
2
sin
(
x
3
)
+
e
−
1
2
x
(
−
3
c
1
sin
3
x
+
3
c
1
cos
3
x
)
{\displaystyle y'(x)=-{\frac {1}{2}}e^{-{\frac {1}{2}}x}(c_{1}\cos(x{\sqrt {3}})+c_{2}\sin(x{\sqrt {3}})+e^{-{\frac {1}{2}}x}(-{\sqrt {3}}c_{1}\sin {{\sqrt {3}}x}+{\sqrt {3}}c_{1}\cos {{\sqrt {3}}x})\!}
y
″
(
x
)
=
1
4
e
−
1
2
x
(
c
1
cos
(
x
3
)
+
c
2
sin
(
x
3
)
−
1
2
e
−
1
2
x
(
−
3
c
1
sin
3
x
+
3
c
1
cos
3
x
)
−
{\displaystyle y''(x)={\frac {1}{4}}e^{-{\frac {1}{2}}x}(c_{1}\cos(x{\sqrt {3}})+c_{2}\sin(x{\sqrt {3}})-{\frac {1}{2}}e^{-{\frac {1}{2}}x}(-{\sqrt {3}}c_{1}\sin {{\sqrt {3}}x}+{\sqrt {3}}c_{1}\cos {{\sqrt {3}}x})-\!}
1
2
e
−
1
2
x
(
−
3
c
1
sin
3
x
+
3
c
1
cos
3
x
)
e
−
1
2
x
(
−
3
c
1
cos
(
x
3
)
−
3
c
2
sin
(
x
3
)
{\displaystyle {\frac {1}{2}}e^{-{\frac {1}{2}}x}(-{\sqrt {3}}c_{1}\sin {{\sqrt {3}}x}+{\sqrt {3}}c_{1}\cos {{\sqrt {3}}x})e^{-{\frac {1}{2}}x}(-3c_{1}\cos(x{\sqrt {3}})-3c_{2}\sin(x{\sqrt {3}})\!}
Substituting
y
,
y
′
,
y
″
{\displaystyle y,y',y''\!}
into the original equation, the result is
y
″
+
y
′
+
3.25
y
=
0
{\displaystyle y''+y'+3.25y=0\!}
y
″
+
0.54
y
′
+
(
0.0729
+
π
)
y
=
0
{\displaystyle y''+0.54y'+(0.0729+\pi )y=0\!}
Let:
d
d
x
=
λ
{\displaystyle {\frac {d}{dx}}=\lambda \!}
Characteristic Equation
edit
λ
2
+
0.54
λ
+
(
0.0729
+
π
)
=
0
{\displaystyle \lambda ^{2}+0.54\lambda +(0.0729+\pi )=0\!}
Using the quadratic equation to find roots we get:
λ
1
=
−
0.27
+
i
(
π
)
2
{\displaystyle \lambda _{1}={\frac {-0.27+i{\sqrt {(}}\pi )}{2}}\!}
λ
2
=
−
0.27
−
i
(
π
)
2
{\displaystyle \lambda _{2}={\frac {-0.27-i{\sqrt {(}}\pi )}{2}}\!}
Therefore:
y
h
(
x
)
=
e
−
0.27
x
(
c
1
cos
(
x
π
)
+
c
2
sin
(
x
π
)
{\displaystyle y_{h}(x)=e^{-0.27x}(c_{1}\cos(x{\sqrt {\pi }})+c_{2}\sin(x{\sqrt {\pi }})\!}
Check By Substitution
edit
y
′
(
x
)
=
−
0.27
e
−
0.27
x
(
c
1
cos
(
x
π
)
+
c
2
sin
(
x
π
)
+
e
−
0.27
x
(
−
π
c
1
sin
π
x
+
π
c
1
cos
π
x
)
{\displaystyle y'(x)=-0.27e^{-0.27x}(c_{1}\cos(x{\sqrt {\pi }})+c_{2}\sin(x{\sqrt {\pi }})+e^{-0.27x}(-{\sqrt {\pi }}c_{1}\sin {{\sqrt {\pi }}x}+{\sqrt {\pi }}c_{1}\cos {{\sqrt {\pi }}x})\!}
y
″
(
x
)
=
0.0729
e
−
0.27
x
(
c
1
cos
(
x
π
)
+
c
2
sin
(
x
π
)
−
0.27
e
−
0.27
x
(
−
π
c
1
sin
π
x
+
π
c
1
cos
π
x
)
−
{\displaystyle y''(x)=0.0729e^{-0.27x}(c_{1}\cos(x{\sqrt {\pi }})+c_{2}\sin(x{\sqrt {\pi }})-0.27e^{-0.27x}(-{\sqrt {\pi }}c_{1}\sin {{\sqrt {\pi }}x}+{\sqrt {\pi }}c_{1}\cos {{\sqrt {\pi }}x})-\!}
0.27
e
−
0.27
x
(
π
c
1
sin
π
x
+
π
c
1
cos
π
x
)
+
e
−
0.27
x
(
−
π
(
c
1
cos
(
x
π
)
)
−
π
(
c
2
sin
(
x
π
)
)
)
{\displaystyle 0.27e^{-0.27x}({\sqrt {\pi }}c_{1}\sin {{\sqrt {\pi }}x}+{\sqrt {\pi }}c_{1}\cos {{\sqrt {\pi }}x})+e^{-0.27x}(-\pi (c_{1}\cos(x{\sqrt {\pi }}))-\pi (c_{2}\sin(x{\sqrt {\pi }})))\!}
Substituting
y
,
y
′
,
y
″
{\displaystyle y,y',y''\!}
into the original equation, the result is
y
″
+
0.54
y
′
+
(
0.0729
+
π
)
y
=
0
{\displaystyle y''+0.54y'+(0.0729+\pi )y=0\!}
Egm4313.s12.team11.gooding 03:41, 7 February 2012 (UTC)
Find and plot the solution for the L2-ODE-CC corresponding to
λ
2
+
4
λ
+
13
{\displaystyle \lambda ^{2}+4\lambda +13\!}
with
r
(
x
)
=
0
{\displaystyle r(x)=0\!}
and initial conditions
y
(
0
)
=
1
{\displaystyle y(0)=1\!}
,
y
′
(
0
)
=
0
{\displaystyle y'(0)=0\!}
In another figure, superimpose 3 figs.:(a)this fig. (b) the fig. in R2.6 p.5-6, and (c) the fig. in R2.1 p.3-7
λ
=
−
b
±
(
b
2
−
4
a
c
)
2
a
{\displaystyle \lambda ={\frac {-b\pm {\sqrt {(}}b^{2}-4ac)}{2a}}\!}
with
a
=
1
,
b
=
4
,
c
=
13
{\displaystyle a=1,b=4,c=13\!}
λ
=
−
4
±
(
4
2
−
4
∗
1
∗
13
)
2
∗
1
=
−
2
±
3
i
{\displaystyle \lambda ={\frac {-4\pm {\sqrt {(}}4^{2}-4*1*13)}{2*1}}=-2\pm 3i\!}
λ
=
−
2
±
3
i
{\displaystyle \lambda =-2\pm 3i\!}
Homogeneous Solution
edit
The solution to a L2-ODE-CC with two complex roots is given by
y
(
x
)
=
e
−
a
2
x
[
A
c
o
s
(
ω
x
)
+
B
s
i
n
(
ω
x
)
]
{\displaystyle y(x)=e^{-{\frac {a}{2}}x}[Acos(\omega x)+Bsin(\omega x)]\!}
where
λ
=
−
a
2
±
ω
i
=
−
2
±
3
i
{\displaystyle \lambda =-{\frac {a}{2}}\pm \omega i=-2\pm 3i\!}
y
(
x
)
=
e
−
2
x
[
A
c
o
s
(
3
x
)
+
B
s
i
n
(
3
x
)
]
{\displaystyle y(x)=e^{-2x}[Acos(3x)+Bsin(3x)]\!}
first initial condition
y
(
0
)
=
1
{\displaystyle y(0)=1\!}
y
(
x
)
=
e
−
2
x
[
A
c
o
s
(
3
x
)
+
B
s
i
n
(
3
x
)
]
{\displaystyle y(x)=e^{-2x}[Acos(3x)+Bsin(3x)]\!}
y
(
0
)
=
e
−
2
∗
0
[
A
c
o
s
(
3
∗
0
)
+
B
s
i
n
(
3
∗
0
)
]
=
1
{\displaystyle y(0)=e^{-2*0}[Acos(3*0)+Bsin(3*0)]=1\!}
A
=
1
{\displaystyle A=1\!}
second initial condition
y
′
(
0
)
=
0
{\displaystyle y'(0)=0\!}
y
′
(
x
)
=
d
d
x
y
(
x
)
=
d
d
x
e
−
2
x
[
c
o
s
(
3
x
)
+
B
s
i
n
(
3
x
)
]
{\displaystyle y'(x)={\frac {d}{dx}}y(x)={\frac {d}{dx}}e^{-2x}[cos(3x)+Bsin(3x)]\!}
y
′
(
x
)
=
e
−
2
x
[
(
−
2
B
−
3
)
s
i
n
(
3
x
)
+
(
3
B
−
2
)
c
o
s
(
3
x
)
]
{\displaystyle y'(x)=e^{-2x}[(-2B-3)sin(3x)+(3B-2)cos(3x)]\!}
y
′
(
0
)
=
e
−
2
∗
0
[
(
−
2
B
−
3
)
s
i
n
(
3
∗
0
)
+
(
3
B
−
2
)
c
o
s
(
3
∗
0
)
]
{\displaystyle y'(0)=e^{-2*0}[(-2B-3)sin(3*0)+(3B-2)cos(3*0)]\!}
0
=
3
B
−
2
{\displaystyle 0=3B-2\!}
B
=
2
3
{\displaystyle B={\frac {2}{3}}\!}
so the solution to our L2-ODE-CC is
y
(
x
)
=
e
−
2
x
[
c
o
s
(
3
x
)
+
2
3
s
i
n
(
3
x
)
]
{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}
After solving for the constants
k
c
{\displaystyle {\frac {k}{c}}}
and
k
m
{\displaystyle {\frac {k}{m}}}
we have the following homogeneous equation
y
″
(
x
)
+
6
y
′
(
x
)
+
9
y
=
0
{\displaystyle y''(x)+6y'(x)+9y=0\!}
Characteristic Equation and Roots
edit
λ
2
+
6
λ
+
9
=
0
{\displaystyle \lambda ^{2}+6\lambda +9=0\!}
(
λ
+
3
)
(
λ
+
3
)
=
0
{\displaystyle (\lambda +3)(\lambda +3)=0\!}
We have a real double root
λ
=
−
3
{\displaystyle \lambda =-3\!}
Homogeneous Solution
edit
We know the homogeneous solution to a L2-ODE-CC with a double real root to be
y
(
x
)
=
c
1
e
λ
x
+
c
2
x
e
λ
x
{\displaystyle y(x)=c_{1}e^{\lambda x}+c_{2}xe^{\lambda x}\!}
Assuming object starts from rest
y
(
0
)
=
1
{\displaystyle y(0)=1\!}
,
y
′
(
0
)
=
0
{\displaystyle y'(0)=0\!}
Plugging in
λ
{\displaystyle \lambda }
and applying our first initial condition
y
(
0
)
=
c
1
e
−
3
∗
0
+
c
2
∗
0
∗
e
−
3
∗
0
=
1
{\displaystyle y(0)=c_{1}e^{-3*0}+c_{2}*0*e^{-3*0}=1\!}
c
1
=
1
{\displaystyle c_{1}=1\!}
Taking the derivative and applying our second condition
y
′
(
x
)
=
d
d
x
y
(
x
)
=
d
d
x
e
−
3
x
+
c
2
x
e
−
3
x
{\displaystyle y'(x)={\frac {d}{dx}}y(x)={\frac {d}{dx}}e^{-3x}+c_{2}xe^{-3x}\!}
y
′
(
x
)
=
−
3
e
−
3
x
+
c
2
e
−
3
x
−
3
c
2
x
e
−
3
x
{\displaystyle y'(x)=-3e^{-3x}+c_{2}e^{-3x}-3c_{2}xe^{-3x}\!}
y
′
(
0
)
=
−
3
e
−
3
∗
0
+
c
2
e
−
3
∗
0
−
3
c
2
∗
0
∗
e
−
3
∗
0
=
0
{\displaystyle y'(0)=-3e^{-3*0}+c_{2}e^{-3*0}-3c_{2}*0*e^{-3*0}=0\!}
c
2
=
3
{\displaystyle c_{2}=3\!}
Giving us the final solution
y
(
x
)
=
e
−
3
x
+
3
x
e
−
3
x
{\displaystyle y(x)=e^{-3x}+3xe^{-3x}\!}
Solution to this Equation
edit
y
(
x
)
=
e
−
2
x
[
c
o
s
(
3
x
)
+
2
3
s
i
n
(
3
x
)
]
{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}
Our solution:
y
(
x
)
=
e
−
2
x
[
c
o
s
(
3
x
)
+
2
3
s
i
n
(
3
x
)
]
{\displaystyle y(x)=e^{-2x}[cos(3x)+{\frac {2}{3}}sin(3x)]\!}
shown in blue
Equation for fig. in R2.1 p.3-7:
y
(
x
)
=
5
4
e
−
2
x
−
1
4
e
5
x
{\displaystyle y(x)={\frac {5}{4}}e^{-2x}-{\frac {1}{4}}e^{5x}\!}
shown in red
Equation for fig. in R2.6 p.5-6:
y
(
x
)
=
e
−
3
x
+
3
x
e
−
3
x
{\displaystyle y(x)=e^{-3x}+3xe^{-3x}\!}
shown in green