Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Hyperbolic functions/Addition theorems/Exercise
Language
Watch
Edit
Prove the addition theorems for the
hyperbolic functions
, that is,
a)
sinh
(
x
+
y
)
=
sinh
x
cosh
y
+
cosh
x
sinh
y
.
{\displaystyle {}\sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y\,.}
b)
cosh
(
x
+
y
)
=
cosh
x
cosh
y
+
sinh
x
sinh
y
.
{\displaystyle {}\cosh(x+y)=\cosh x\cosh y+\sinh x\sinh y\,.}
Create a solution