Conic sections

(Redirected from Hyperbola)

Conic sections are curves created by the intersection of a plane and a cone. There are six types of conic section: the circle, ellipse, hyperbola, parabola, a pair of intersecting straight lines and a single point.

All conics (as they are known) have at least two foci, although the two may coincide or one may be at infinity. They may also be defined as the locus of a point moving between a point and a line, a directrix, such that the ratio between the distances is constant. This ratio is known as "e", or eccentricity.

Ellipses

edit
 
Animation showing distance from the foci of an ellipse to several different points on the ellipse.

An ellipse is a locus where the sum of the distances to two foci is kept constant. This sum is also equivalent to the major axis of the ellipse - the major axis being longer of the two lines of symmetry of the ellipse, running through both foci. The eccentricity of an ellipse is less than one.

In Cartesian coordinates, if an ellipse is centered at (h,k), the equation for the ellipse is

     (equation 1)

The lengths of the major and minor axes (also known as the conjugate and transverse) are "a" and "b" respectively.

Exercise 1. Derive equation 1.    (hint)

A circle circumscribed about the ellipse, touching at the two end points of the major axis, is known as the auxiliary circle. The latus rectum of an ellipse passes through the foci and is perpendicular to the major axis.

From a point P( ,  ) tangents will have the equation:

 

And normals:

 

Likewise for the parametric coordinates of P, (a  , b  ),

 

Properties of Ellipses

edit

S and S' are typically regarded as the two foci of the ellipse. Where  , these become (ae, 0) and (-ae, 0) respectively. Where   these become (0, be) and (0, -be) respectively.

A point P on the ellipse will move about these two foci ut  

Where a > b, which is to say the Ellipse will have a major-axes parallel to the x-axis:

 

The directrix will be:  

Circles

edit

A circle is a special type of the ellipse where the foci are the same point.

Hence, the equation becomes:

 

Where 'r' represents the radius. And the circle is centered at the origin (0,0)

Hyperbolas

edit

A special case where the eccentricity of the conic shape is greater than one.

Centered at the origin, Hyperbolas have the general equation:

 

A point P on will move about the two foci ut  

The equations for the tangent and normal to the hyperbola closely resemble that of the ellipse.

From a point P( ,  ) tangents will have the equation:

 

And normals:

 

The directrixes (singular directrix) and foci of hyperbolas are the same as those of ellipses, namely directrixes of   and foci of  

The asymptotes of a hyperbola lie at  

 
Figure 1: Hyperbola at origin with transverse axis horizontal.

Origin at point   .
Foci are points  
Vertices are points  
Line segment   is the  
 

In cartesian geometry in two dimensions hyperbola is locus of a point   that moves relative to two fixed points called    The distance   from one   to the other   is non-zero. The absolute difference of the distances   from point to foci is constant.


  See figure 1.


Center of hyperbola is located at the origin   and the foci   are on the   at distance   from  


  has coordinates   has coordinates  . Line segments  


Each point   where the curve intersects the transverse axis is called a   are the vertices of the ellipse.


By definition  


  the length of the    

Equation of hyperbola at origin

edit

Transverse axis horizontal

edit

 
Figure 1: Hyperbola at origin with transverse axis horizontal.

 
Origin at point   .
Foci are points  
Vertices are points  
 

 

Let point   have coordinates  


 

 

 

 

 

 

 

 

 


Make appropriate substitutions, expand and result is:

 

Simplify, gather like terms and recall that, for hyperbola,  

 

 

Let  

 

 

 


Curve in diagram has:

 

 

equation   or  

where  

Transverse axis vertical

edit

 
Figure 1: Hyperbola at origin with transverse axis vertical.

 
Origin at point   .
Foci are points  
Vertices are points  
 

 

Let point   have coordinates  

Let Focus 1,   have coordinates  

Let Focus 2,   have coordinates  


 

 

 


Make substitutions as above, expand and result is:

 

Simplify, gather like terms and recall that, for hyperbola,  

 

 

Let  

 

 

 


Curve in diagram has:

 

 

equation   or  

where  

Transverse axis oblique

edit

 
Figure 1: Hyperbola at origin with transverse axis oblique.

 
Center of hyperbola is at origin,  
Foci are points  
 

With transverse axis oblique the two foci are defined as:

 

 

where both   are non-zero.

Distance from center to focus   and  

Let  

Let  

By definition:  

If you make the substitutions as before, result is:

  where:

 

 

 

 


Curve in diagram has:

  • Foci at (24,7), (-24,-7)
  • a = 20
  • equation  

Implementation

edit
# python code

import decimal
dD = decimal.Decimal                        # Decimal object is like float with (almost) infinite precision.
dgt = decimal.getcontext()
Precision = dgt.prec = 28                   # Adjust as necessary.
Tolerance = dD("1e-" + str(Precision-2))    # Adjust as necessary.
# 
# sum_zero(input) is function that calculates sum of all values in input.
# However, if sum is non-zero but very close to 0 and Tolerance permits,
# sum is returned as 0.
# For example sum of (2, -1.99999_99999_99999_99999_99999_99) is
# returned as 0.
#

def hyperbola_ABCF(a,pq, flag = 0) :
    '''
Ax^2 + By^2 + Cxy + Dx + Ey + F = 0
for hyperbola at origin, D = E = 0.
ABCF = hyperbola_ABCF( a, pq [, flag] )
(2)a is length of transverse axis.
(p,q) are one focus. Other focus is (-p,-q)
    '''
    thisName = 'hyperbola_ABCF(a,pq, {}) :'.format(bool(flag))
    p,q = pq
    a,p,q = [ dD(str(v)) for v in (a,p,q) ]
    if a == 0 :
        print (thisName)
        print ('  For hyperbola, a must be non-zero.')
        return None
    aa,pp,qq = a**2, p**2, q**2
    cc = pp + qq
    # c = cc.sqrt() and (2)c is distance between foci.
    if cc > aa : pass
    else :
        print (thisName)
        print ('  For hyperbola, c must be > a.')
        return None
    A = aa - pp
    B = aa - qq
    C = -2*p*q
    # F = aa*( pp + qq - aa )
    F = aa*( cc - aa ) # F = aa*bb
    if flag :
        # Print results:
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({}) = 0'
        str2 = str1.format(A,B,C,F)
        print (str2)

        # Equation of small circle, used to display points on grapher.
        str3 = '({},{})    (x - ({}))^2 + (y - ({}))^2 = 1'
        print ('    F1:', str3.format(p,q, p,q))
        print ('    F2:', str3.format(-p,-q, -p,-q))
        print ('    axis: ({})y = ({})x'.format(p,q))

        print ('    aa,a =', aa,a)
        bb = cc-aa ; b = bb.sqrt()
        print ('    bb,b =', bb,b)
        c = cc.sqrt()
        print ('    cc,c =', cc,c)
        if C == 0 :
            # Display intercept form of equation.
            if F > 0 : A,B,C,F = [ -v for v in (A,B,C,F) ]
            str1a = '({})x^2 + ({})y^2 + ({}) = 0'
            str4 = str1a.format(A,B,F)
            print ('   ', str4)

            if (A == bb) and (B == -aa) :
                # (225)x^2 + (-400)y^2 + (-90000) = 0
               str5 = 'xx/(({})^2) - yy/(({})^2) = 1'
               top1_ = 'x^2' ; top2_ = 'y^2'
            elif (A == -aa) and (B == bb) :
                # (-400)x^2 + (225)y^2 + (-90000) = 0
               str5 = 'yy/(({})^2) - xx/(({})^2) = 1'
               top1_ = 'y^2' ; top2_ = 'x^2'
            else : ({}[2])
            str6 = str5.format(a, b)
            print ('   ',str6)

            str5 = '\\frac{{ {} }}{{ {}^2 }} - \\frac{{ {} }}{{ {}^2 }} = 1'
            print('   ','<math>', str5.format(top1_,a, top2_,b), '</math>')
            
            bottom1,bottom2 = [ '({})^2'.format(v) for v in (a,b) ]
            len1,len2 = [ len(v) for v in (bottom1,bottom2) ]
            len1a = (len1-3) >> 1 ; len1b = (len1-3)-len1a
            len2a = (len2-3) >> 1 ; len2b = (len2-3)-len2a
            top1 = '{}{}{}'.format( ' '*len1a,top1_, ' '*len1b )
            top2 = '{}{}'.format( ' '*len2a,top2_ )
            print ( '   ', top1, ' ', top2 )
            print ( '   ', '-'*len1,'-', '-'*len2, '= 1' )
            print ( '   ', bottom1, ' ', bottom2 )
    return A,B,C,F

Examples

edit

Reversing the process

edit

The expression "reversing the process" means calculating the values of   when given equation of hyperbola at origin, the familiar values  

Consider the equation of a hyperbola at origin:   This is a hyperbola where  

This hyperbola may be expressed as   or   or   where   is any real, non-zero number.

However, when this hyperbola is expressed as   this format is the hyperbola expressed in "standard form," a notation that greatly simplifies the calculation of  

Modify the equations for   slightly:

 

 

 

 

There are four simultaneous equations with four known values   and four unknown:  

 

For  

For   the ideal condition.

Implementation
edit
# python code

def hyperbola_a_pq (ABCF, flag = 0) :
    '''
Ax^2 + By^2 + Cxy + Dx + Ey + F = 0
Here D = E = 0.
a,(p,q) = hyperbola_a_pq (ABCF [, flag])
ABCF implies hyperbola with center at origin (0,0).
if flag : print info about hyperbola.
    '''
    thisName = 'hyperbola_a_pq (ABCF, {}) :'.format(bool(flag))
    A1,B1,C1,F1 = [ dD(str(v)) for v in ABCF ]
    K = 4*F1/(C1**2 - 4*A1*B1)
    A,B,C,F = [ K*v for v in (A1,B1,C1,F1) ] # Standard form.
    # 
    # A = aa - pp ; pp = aa-A
    # B = aa - qq ; qq = aa - B
    # F = aa(pp + qq - aa)
    # F = aa((aa-A) + (aa-B) - aa)
    # F = aaaa-aaA + aaaa-aaB - aaaa
    # F = aaaa - aaA - aaB
    # aaaa - aaA - aaB - F = 0
    # aaaa -(A + B)aa - F = 0
    # 
    # We have a quadratic function in aa.
    # (a_)(aa)(aa) + (b_)(aa) + (c_) = 0
    # Coefficients of quadratic function:
    a_,b_,c_ = 1, -(A+B), -F
    discr = b_**2 - 4*a_*c_
    root = discr.sqrt()
    aa,X = (-b_ + root)/2, (-b_ - root)/2
    # X positive: ellipse
    # X negative: hyperbola
    if X < 0 : pass
    else :
        print (thisName)
        print ('    For hyperbola, X must be < 0. ',)
        return None
    
    a = aa.sqrt() ; pp = aa - A ; p = pp.sqrt()
    if p : q = -C/(2*p)
    else :
        qq = aa - B ; q = qq.sqrt()

    if flag :
        # Print results.
        print ()
        print (thisName)
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({}) = 0'
        str2 = str1.format(A1,B1,C1,F1)
        print (str2)
        if K != 1 :
            str2a = str1.format(A,B,C,F)
            print (str2a, 'Standard form.')
            
        str3 = '({}, {})    (x - ({}))^2 + (y - ({}))^2 = 1'
        print ('    F1:', str3.format(p,q, p,q))
        print ('    F2:', str3.format(-p,-q, -p,-q))
        cc = pp + q**2 ; c = cc.sqrt()
        bb = cc - aa ; b = bb.sqrt()
        for x in 'K A B C F X a b c'.split() :
            print ('   ', x, '=', eval(x))

    return a,(p,q)

Second definition of hyperbola

edit

 
Graph of hyperbola   where  .
At vertex  
At point  

Hyperbola is path of point that moves so that ratio of distance to fixed point and distance to fixed line is constant.


Let   where:

  •   is non-zero,
  •  
  •  

Therefore,  

Let directrix have equation   where  


At vertex  

       


At point  

 

 

         


At point  

       

 

       

     


Aim of this section is to prove that :  

Statement   has been proved for two specific points, vertex   and point  


Section under "Proof" below proves that statement (3) is true for any point   on hyperbola.

Proof

edit
 
Proving that  .
Graph is part of curve  
At point  
distance to Directrix2  
base =  
 

As expressed above in statement   second definition of hyperbola states that hyperbola is path of point that moves so that ratio of distance to fixed point and distance to fixed line is constant.


This section proves that this definition is true for any point   on hyperbola.


At point  

 

base  

     

 

 

     


Similar calculations can be used to prove the case for Focus1   and Directrix1   in which case:

   

Therefore:   where  


Second definition of hyperbola has been proven valid:

Hyperbola is path of point that moves so that ratio of distance to fixed point and distance to fixed line is constant, called eccentricity  

The general hyperbola

edit

In the two dimensional space of Cartesian Coordinate Geometry the hyperbola may be located anywhere and with any orientation.

To keep the calculation of the general hyperbola as simple as possible, there are two functions that will become very useful:

# python code

def move_section_relative (ABCDEF, gh, flag = 0) :
    '''
Ax^2 + By^2 + Cxy + Dx + Ey + F = 0
A,B,C,D1,E1,F1 = move_section_relative ( (A,B,C,D,E,F), (g,h) [, flag]) 
This function moves conic section from its present position to a new
position (g,h) relative to present position.
    '''
    A,B,C,D,E,F = [ dD(str(v)) for v in ABCDEF ]
    g,h = [ dD(str(v)) for v in gh ]
    # 
    # After move, equation of hyperbola becomes:
    # A(x-g)^2 + B(y-h)^2 + C(x-g)(y-h) + D(x-g) + E(y-h) + F = 0
    # or
    # Ax^2 + By^2 + Cxy + (D1)x + (E1)y + (F1) = 0 where:
    D1 = D - C*h - 2*A*g
    E1 = E - C*g - 2*B*h
    F1 = A*g*g + C*g*h + B*h*h + F - D*g - E*h 
    if flag :
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'
        str2 = str1.format(A,B,C,D,E,F)
        print ('from:', str2)
        str3 = str1.format(A,B,C,D1,E1,F1)
        print ('to  :',str3)
    return A,B,C,D1,E1,F1
# python code

def center_of_hyperbola (ABCDEF) :
    '''
Ax^2 + By^2 + Cxy + Dx + Ey + F = 0
G,H = center_of_hyperbola (ABCDEF)
    '''
    A,B,C,D,E,F = [ dD(str(v)) for v in ABCDEF ]
    # 
    # If center of hyperbola (G,H) is known then:
    # move_section_relative (ABCDEF, (-G,-H)) 
    # will move hyperbola to origin and D1 = E1 = 0.
    # Equations for D1,E1 become:
    # 
    # D - C*(-H) - 2*A*(-G) = 0
    # E - C*(-G) - 2*B*(-H) = 0
    # 
    # Two simultaneous equations in G,H:
    # 2AG +  CH + D = 0
    #  CG + 2BH + E = 0
    # 
    # C2AG +   CCH +  CD = 0
    # 2ACG + 2A2BH + 2AE = 0
    #        (CC-4AB)H + (CD - 2AE) = 0
    #        (CC-4AB)H = (2AE - CD)
    # 
    #     (2AE - CD)
    # H = ----------
    #     (CC - 4AB)
    #
    H = (2*A*E - C*D)/(C*C - 4*A*B)
    if A :
        G = -(C*H + D)/(2*A)
        return G,H
    if C :
        G = -(2*B*H + E)/C
        return G,H
    ({}[11])

Compare the two simultaneous equations for   with those derived from calculus under Slope of curve.

Deriving equation

edit

To calculate the general equation three values must be known:

  • Focus1  
  • Focus2  
  • Length of transverse axis   or two_a.

Calculate center of hyperbola  

Calculate  

Calculate equation of hyperbola at origin  

Move hyperbola from origin to point  

# python code

def hyperbola_ABCDEF (two_a, F1, F2, flag = 0) :
    '''
Ax^2 + By^2 + Cxy + Dx + Ey + F = 0

A,B,C,D,E,F = hyperbola_ABCDEF (two_a, F1, F2  [, flag])
two_a is length of transverse axis
F1 is Focus1: (F1x,F1y)
F2 is Focus2: (F2x,F2y)
if flag : print info about hyperbola.
    '''
    thisName = 'hyperbola_ABCDEF (two_a, F1, F2, {}) :'.format(bool(flag))

    F1x,F1y = F1 ; F2x,F2y = F2
    two_a,F1x,F1y,F2x,F2y = [ dD(str(v)) for v in (two_a,F1x,F1y,F2x,F2y) ]
    
    a = two_a/2
    if a == 0 :
        print (thisName)
        print ('    For hyperbola a must be non-zero.')
        return None

    G = (F1x + F2x)/2 ; H = (F1y + F2y)/2
    p = F2x - G ; q = F2y - H
    aa,pp,qq = a**2, p**2, q**2
    cc = pp + qq
    if cc > aa : pass
    else :
        print (thisName)
        print ('    For hyperbola c must be greater than a.')
        return None
    A00,B00,C00,F00 = hyperbola_ABCF(a, (p,q)) # Hyperbola at origin.
    A,B,C,D,E,F = move_section_relative ( (A00,B00,C00,0,0,F00), (G,H) )
    ( {A==A00, B==B00, C==C00} == {True} ) or ({}[2])
    
    if flag :
        print()
        print(thisName)
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'
        print (str1.format(A,B,C,D,E,F))
        print ('   ', str1.format(A,B,C,0,0,F00))

        str3 = '({},{})    (x - ({}))^2 + (y - ({}))^2 = 1'
        print ('    F1:', str3.format(F1x,F1y, F1x,F1y))
        print ('    F2:', str3.format(F2x,F2y, F2x,F2y))
        print ('    GH:', str3.format(G,H, G,H))
        print ('    f1:', str3.format(p,q, p,q))
        print ('    f2:', str3.format(-p,-q, -p,-q))

        bb = cc - aa
        b = bb.sqrt() ; c = cc.sqrt()
        print ('    a =', a)
        print ('    b =', b)
        print ('    c =', c)
        print ('    eccentricity e =', c/a)
        # Axis:
        Dx = F1x-F2x ; Dy = F1y - F2y
        # Dy x - Dx y + c = 0
        a,b = Dy, -Dx
        # ax + by + c = 0
        c = -(a*F1x + b*F1y)
        print ( '    axis: ({})x + ({})y + ({}) = 0'.format(a,b,c) )
    return A,B,C,D,E,F

Examples

edit

Curve in Figure 1 below is defined by:

  • Focus1,  
  • Focus2,  
  • Constant,  

Curve has equation:  


Curve in Figure 2 below is defined by:

  • Focus1,  
  • Focus2,  
  • Constant,  

Curve has equation:  


Curve in Figure 3 below is defined by:

  • Focus1,  
  • Focus2,  
  • Constant,  

Curve has equation:  

Reversing the process

edit

The expression "reversing the process" means calculating the values of   and length of transverse axis when given equation of general hyperbola, the familiar values  


Calculate center of hyperbola.

Move hyperbola to origin.

Calculate a,(p,q) of hyperbola at origin.

Calculate   and length of transverse axis,  

Implementation
edit
# python code

def hyperbola_2a_F1_F2 (ABCDEF, flag = 0) :
    '''
Ax^2 + By^2 + Cxy + Dx + Ey + F = 0

two_a, F1, F2 = hyperbola_2a_F1_F2 (ABCDEF  [, flag])
two_a, (2)a, is length of transverse axis.
F1, (F1x,F1y), is Focus1.
F2, (F2x,F2y), is Focus2.
#bb = b**2 where (2)b is length of conjugate axis.
if flag == 1 : Check calculations.
if flag == 2 : Check and print result of calculations.
    '''
    thisName = 'hyperbola_2a_F1_F2 (ABCDEF, flag = {}) :'.format(flag)
    ( 2 >= flag >= 0 ) or ({}[1])
    A,B,C,D,E,F = [ dD(str(v)) for v in ABCDEF ]
    G,H = center_of_hyperbola ((A,B,C,D,E,F)) 
    # Move hyperbola to origin.
    A0,B0,C0,D0,E0,F0 = move_section_relative (ABCDEF, (-G,-H))
    (D0 == E0 == 0) or ({}[2])
    a,(p,q) = hyperbola_a_pq ( (A0,B0,C0,F0) )
    # Two foci:
    F1 = G+p,H+q ; F2 = G-p,H-q
    if flag :
        # Check calculations.
        # Produce hyperbola in standard form.
        ABCDEF_ = hyperbola_ABCDEF (2*a, F1, F2)
        # zip returns:
        # ( (ABCDEF[0], ABCDEF_[0]),
        #    .....................
        #   (ABCDEF[5], ABCDEF_[5]) )
        # (Both v,v_ must be 0) or (Both v,v_ must be non-zero.)
        for (v,v_) in zip(ABCDEF, ABCDEF_) : ( bool(v) == bool(v_) ) or ({}[3])
        set1 = set([ (v_/v) for (v_,v) in zip( ABCDEF_, (A,B,C,D,E,F) ) if v ])
        (len(set1) == 1) or ({}[4])
        
        if flag == 2 :
            print ()
            print (thisName)
            # Print results.
            str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'
            str2 = str1.format(A,B,C,D,E,F)
            print (str2)
            K, = set1
            if K != 1 :
                A_,B_,C_,D_,E_,F_ = ABCDEF_
                str3 = str1.format(A_,B_,C_,D_,E_,F_)
                print (str3, 'Standard form.')
            str4 = '({})x^2 + ({})y^2 + ({})xy + ({}) = 0'.format(A0,B0,C0,F0)
            print (str4, 'At origin.')
            
            F1x,F1y = F1 ; F2x,F2y = F2
            two_c = distance_between_foci = ( (F1x-F2x)**2 + (F1y-F2y)**2 ).sqrt()
            length_of_transverse_axis = 2*a
            e = distance_between_foci/length_of_transverse_axis
        
            for c in 'K G,H a 2*a two_c e'.split() :
                print ('   ', c, '=', eval(c))
            str5 = '({}, {})    (x - ({}))^2 + (y - ({}))^2 = 1'
            print ('    F1:', str5.format(F1x,F1y, F1x,F1y))
            print ('    F2:', str5.format(F2x,F2y, F2x,F2y))
            print ('    f1:', str5.format(p,q, p,q))
            print ('    f2:', str5.format(-p,-q, -p,-q))
            
            # Axis:
            Dx = F1x-F2x ; Dy = F1y - F2y
            # Dy x - Dx y + c = 0
            a1,b1 = Dy, -Dx
            # a1 x + b1 y + c1 = 0
            c1 = -(a1*F1x + b1*F1y)
            print ( '    axis: ({})x + ({})y + ({}) = 0'.format(a1,b1,c1) )
        
    return 2*a,F1,F2

Example
edit
 
Figure 1: Hyperbola with random position and orientation.
 

Equation of hyperbola is given.
This section calculates length of transverse axis,  

A hyperbola has equation:  

Calculate two foci and length of transverse axis.

# python code

ABCDEF = 176, -351, -336, -2528, 6504, -89104
two_a, F1, F2 = hyperbola_2a_F1_F2 (ABCDEF)
print ('Length of transverse axis =',two_a )
print ('F1 = ({},{})'.format(F1[0], F1[1] ))
print ('F2 = ({},{})'.format(F2[0], F2[1] ))
Length of transverse axis = 40
F1 = (35,-3)
F2 = (-13,11)

To check calculation and for more information about hyperbola:

# python code
hyperbola_2a_F1_F2 (ABCDEF, 2) # Set flag.
hyperbola_2a_F1_F2 (ABCDEF, flag = 2) :
(176.00)x^2 + (-351.00)y^2 + (-336)xy + (-2528.00)x + (6504.00)y + (-89104.0000) = 0
(-176.00)x^2 + (351.00)y^2 + (336.0)xy + (2528.000)x + (-6504.00)y + (89104.0000) = 0 Standard form.
(176.00)x^2 + (-351.00)y^2 + (-336)xy + (-90000.0000) = 0 At origin.
    K = -1
    G,H = (Decimal('11'), Decimal('4'))
    a = 20.0
    2*a = 40.0
    two_c = 50.0 
    e = 1.25
    F1: (35.0, -3)    (x - (35.0))^2 + (y - (-3))^2 = 1
    F2: (-13.0, 11)    (x - (-13.0))^2 + (y - (11))^2 = 1
    f1: (24.0, -7)    (x - (24.0))^2 + (y - (-7))^2 = 1
    f2: (-24.0, 7)    (x - (-24.0))^2 + (y - (7))^2 = 1
    axis: (-14)x + (-48.0)y + (346.0) = 0

Asymptotes of hyperbola

edit

 
Graph of hyperbola   where  .
Blue lines are asymptotes of hyperbola.
Hyperbola and asymptotes do not intersect.
Any line parallel to asymptote intersects hyperbola in exactly one place.

We are familiar with values   where:

  • Length of transverse axis  
  • Distance between foci  

And we have said: Let   What is  ?

Value   defines the   In diagram, line segment   is conjugate axis with length  

Box at origin with length   and width   contains two special lines (blue lines) called  


Let asymptote1 have equation  

Hyperbola has equation  

Calculate point of intersection of  


From  

Substitute for   in  

This does not make sense. There is no real point of intersection of  


Let any line parallel to asymptote have equation:  

Calculate point of intersection of  


 

 

 

 

 

 

 

 

Provided that   are non-zero,   is a real number.


  • Asymptote is line whose position is as close as possible to hyperbola (both sides) without touching it.
  • Any line parallel to asymptote intersects hyperbola in exactly one place.

Line and hyperbola

edit

This section describes possibilities that arise when we consider intersection of line and hyperbola.

At origin
edit

Let hyperbola have equation  

Let line have equation:  

Let line intersect curve. For   substitute  

 

Expand   simplify, gather like terms and result is quadratic function in  

  where:

 

 

 


From these results we can deduce:

  • If line is parallel to asymptote, c2 = 0.
  • If c2 == 0, line is parallel to asymptote.
  • If line is asymptote, both   are 0.
  • If both   are 0, line is asymptote.


These deductions are included in general case below.

Generally
edit

Let the conic section have the familiar equation:  


Let a line have equation:  


Let   intersect the conic section. For   in equation of conic section substitute  


 


Expand   simplify, gather like terms and result is quadratic function in  


 _ _ _  where:

 _  

 _  

 _  


If line   is an asymptote, then  _  _   in which case:

 _ _ _  where:

_ _ _ 

and   (roots of  ) are the slopes of the 2 asymptotes.


Python code below recognizes whether or not line is asymptote or parallel to asymptote.

Implementation
edit
# python code
def hyperbola_and_line (ABCDEF, line_abc, flag = 0) :
    '''
This function calculates point/s of intersection (if any) of hyperbola and line.
hyperbola is: Ax^2 + By^2 + Cxy + Dx + Ey + F = 0
line is: ax + by + c = 0
To invoke:
[] = hyperbola_and_line (ABCDEF, line_abc[, flag]) 
[point1] = hyperbola_and_line (ABCDEF, line_abc[, flag]) 
[point1,point2] = hyperbola_and_line (ABCDEF, line_abc[, flag])
if line is asymptote or parallel to asymptote, output is type tuple.
if flag : check results.
if flag==2 : print results.
    '''
    
    (2 >= flag >= 0) or ({}[1])
    thisName = 'hyperbola_and_line (ABCDEF, line_abc, {}) :'.format(flag)
    a,b,c = [ dD(str(v)) for v in line_abc ]
    # a,b,c refer to line ax + by + c = 0.
    if a == b == 0 :
        print (thisName)
        print ('  At least one of a,b must be non-zero.')
        return None
    A,B,C,D,E,F = [ dD(str(v)) for v in ABCDEF ]

    output = []
    if b == 0:
        # Reverse x,y going in.
        result = hyperbola_and_line ( (B,A,C,E,D,F), (b,a,c))
        # Reverse x,y coming out.
        output = (type(result))([ v[::-1] for v in result ])
        # output is same type as result.
    else:
        # Axx + Byy + Cxy + Dx + Ey + F = 0
        # ax + by + c = 0 ; by = (- (ax + c))
        # Multiply equation of hyperbola by bb:
        # Abbxx + Bbyby + Cxbby + Dbbx + Ebby + Fbb = 0
        # For 'by' substitute '(- (ax + c))'.
        # Abbxx + B(-(ax+c))(-(ax+c)) + Cxb(-(ax+c)) + Dbbx + Eb(-(ax+c)) + Fbb = 0
        # Expand and result is quadratic function in x, (a_)xx + (b_)x + (c_) = 0 where
        a_ = A*b*b, + B*a*a, - C*a*b
        b_ = B*2*a*c, + D*b*b, - C*b*c, - E*b*a
        c_ = B*c*c, + F*b*b, - E*b*c
        a_,b_,c_ = [ sum_zero(v) for v in (a_,b_,c_) ]
        while 1:
            if a_ == 0 :
                # Line is parallel to asymptote.
                # values_of_x is of type tuple.
                if b_ == 0 :
                    # Line is asymptote. Return empty tuple.
                    values_of_x = tuple([]) ; break
                values_of_x = ( -c_/b_, ) ; break

            # values_of_x is of type list.
            two_a = 2*a_ ; discr = sum_zero((b_**2, - 4*a_*c_))
            if discr == 0 :
                # discr is 0 or very close to 0.
                values_of_x = [ -b_/two_a ] ; break

            if discr < 0 :
                values_of_x = [ ] ; break

            root = discr.sqrt()
            values_of_x = [ (-b_ - root)/two_a, (-b_ + root)/two_a ] ; break

        for x in values_of_x :
            by = -(a*x+c) ; y = by/b # Here is why b must be non-zero.
            output += [ (x,y) ]
        # output is same type as values_of_x.
        output = (type(values_of_x))(output)

    if flag :
        # Check results.
        errors = []
        for x,y in output :
            sum1 = sum_zero((A*x**2 , B*y**2 , C*x*y , D*x , E*y , F))
            if sum1 :
                errors += [ 'bad sum1: {} for point ({},{})'.format(sum1, x,y) ]
            sum2 = sum_zero((a*x , b*y , c))
            if sum2 :
                errors += [ 'bad sum2: {} for point ({},{})'.format(sum2, x,y) ]
        if errors or (flag == 2) :
            # Print results.
            print ()
            print (thisName)
            str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'
            print ( str1.format(A,B,C,D,E,F) )
            str3 = '({})x + ({})y + ({}) = 0'.format(a,b,c)
            print (str3)
            print ( 'ABCDEF = A,B,C,D,E,F = {}, {}, {}, {}, {}, {}'.format(A,B,C,D,E,F) )
            print ( 'abc = a,b,c = {}, {}, {}'.format(a,b,c) )
            
            str4 = 'output[{}]: ({},{}),    (x - ({}))^2 + (y - ({}))^2 = 1'
            for p in range (0,len(output)) :
                x,y = output[p]
                print ('   ', str4.format(p, x,y, x,y))
            for v in errors : print ('   ',v)
    # output may be empty: [] or (). () means asymptote.
    # or output may contain one point:
    #     [ (x1,y1) ] or ( (x1,y1), ). ( (x1,y1), ) means line is parallel to asymptote.
    # or output may contain two points: [ (x1,y1), (x2,y2) ]
    return output

Examples
edit
With no common point
edit
 
Diagram of hyperbola and two lines.
Both lines do not touch hyperbola.
Line 1 is asymptote.
Line 2 is not asymptote.

Line 1:

# python code

ABCDEF = A,B,C,D,E,F = 704, -1404, 1344, -11040, -41220, -161775

abc = a,b,c = 88.0, 234.0, 435.0
result = hyperbola_and_line (ABCDEF, abc) 
sx = 'result' ; print (sx, eval(sx))

Code recognizes that line is asymptote and returns empty tuple:

result ()

Line 2:

# python code

result = hyperbola_and_line (ABCDEF, (1,0,-10)) # x = 10.
sx = 'result' ; print (sx, eval(sx))

Code recognizes that line is not asymptote and returns empty list:

result []

With one common point
edit
 
Diagram of hyperbola and two lines.
Each line and hyperbola have one common point.
Line 1 (blue) is parallel to asymptote.
Line 2 (orange) is not parallel to asymptote.

Line 1:

# python code

ABCDEF = A,B,C,D,E,F = 704, -1404, 1344, -11040, -41220, -161775

abc = a,b,c = 88.0, 234.0, -1065
result = hyperbola_and_line (ABCDEF, abc) 
sx = 'result' ; print (sx, eval(sx))

Code recognizes that line is parallel to asymptote and returns tuple containing one point:

result ((24.6, -4.7),)

Line 2:

# python code

abc = a,b,c = -.96, -.28, 2.3
result = hyperbola_and_line (ABCDEF, abc) 
sx = 'result' ; print (sx, eval(sx))

Code recognizes that line is not parallel to asymptote and returns list containing one point:

result [ (5.4, -10.3) ]

With two common points
edit
 
Diagram of hyperbola and line.
Line and hyperbola have two common points.
When line and hyperbola have two common points, line cannot be parallel to asymptote.

Line 1:

# python code

ABCDEF = A,B,C,D,E,F = 704, -1404, 1344, -11040, -41220, -161775

abc = a,b,c = .96, .28, .2
result = hyperbola_and_line (ABCDEF, abc) 
sx = 'result' ; print (sx, eval(sx))

Code returns list containing two points:

result [ (1.425,-5.6), (4.575,-16.4) ]

Calculation of Asymptotes

edit
# python code

def asymptotes_of_hyperbola (ABCDEF, flag = 0) :
    '''
asymptote1, asymptote2 = asymptotes_of_hyperbola (ABCDEF [, flag])
Each asymptote is of form (a,b,c) where ax + by + c = 0.
if flag == 1: check results.
if flag == 2: check and print results.
    '''
    (2 >= flag >= 0) or ({}[3])
    thisName = 'asymptotes_of_hyperbola (ABCDEF, {}) :'.format(flag)

    A,B,C,D,E,F = [ dD(str(v)) for v in ABCDEF ]

    G,H = center_of_hyperbola (ABCDEF)
    while 1 :
        if A == B == 0 :
            if 0 in (C,F) :
                print (thisName)
                print ('    For rectangular hyperbola, both C,F must be non-zero.')
                return None
            asymptote1 = 1,0,-G # x = G
            asymptote2 = 0,1,-H # y = H
            output = [ asymptote1, asymptote2 ] ; break

        if B == 0 :
            # Reverse x,y going in.
            result = asymptotes_of_hyperbola ( (B,A,C,E,D,F), int(bool(flag)) )
            (a1,b1,c1),(a2,b2,c2) = result
            # Reverse x,y coming out.
            output = [ (b1,a1,c1), (b2,a2,c2) ] ; break

        _a,_b,_c = B,C,A
        discr = _b**2 - 4*_a*_c
        root = discr.sqrt()
        m1 = (-_b - root),(2*_a)
        m2 = (-_b + root),(2*_a)
        #     p
        # y = -x + c
        #     q
        # 
        # qy = px + c
        # px - qy + c = 0
        # ax + by + c = 0
        p,q = m1 ; a1,b1 = p,-q
        c1 = -(a1*G + b1*H)
        asymptote1 = a1,b1,c1
        p,q = m2 ; a2,b2 = p,-q
        c2 = -(a2*G + b2*H)
        asymptote2 = a2,b2,c2
        output = [ asymptote1, asymptote2 ]

        if flag :
            # Check results.
            values_of_c_ = []
            for a3,b3,c3 in output :
                # a3 x + b3 y + c3 = 0
                # b3 y = -(a3 x + c3)
                m = -a3/b3 ; c = -c3/b3
                b_ = sum_zero((2*B*c*m , c*C , D , E*m))
                b_ and ({}[6])
                values_of_c_ += [ E*c + F + B*c**2 ]
            c_1,c_2 = values_of_c_ # c_1,c_2 should be equal.
            sum_zero ((c_1, -c_2)) and ({}[6])
        break

    if flag :
        results = []
        for asymptote in output :
            result = hyperbola_and_line (ABCDEF, asymptote, 1)
            results += [ result ]
        set1 = { v==tuple([]) for v in results }
        error = (set1 != {True})
        if error or (flag == 2) :
            print (thisName)
            str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'
            a,b,c,d,e,f = [ float(v) for v in ABCDEF ]
            print ( '   ', str1.format(a,b,c,d,e,f) )
        
            asymptote1,asymptote2 = output
            a1,b1,c1 = [ float(v) for v in asymptote1 ]
            print ( '    asymptote1: ({})x + ({})y + ({}) = 0    {}'.format(a1,b1,c1, results[0]==()) )
            a2,b2,c2 = [ float(v) for v in asymptote2 ]
            print ( '    asymptote2: ({})x + ({})y + ({}) = 0    {}'.format(a2,b2,c2, results[1]==()) )
    return output

edit

Family of hyperbolas

edit
 
Family of hyperbolas  

Asymptote1 (brown line):  
Asymptote2 (green line):  

Asymptotes of hyperbola are determined by coefficients  

All hyperbolas in diagram have coefficients  

Consider the family of hyperbolas that satisfy equation:

 

Provided that coefficients   remain constant, hyperbolas of form   are members of a family, all of which share the same asymptotes.


Examples of this family in diagram are:

 

 

 

 

 

 

 

 

Rectangular Hyperbolas

edit

Rectangular Hyperbolas are special cases of hyperbolas where the asymptotes are perpendicular. These have the general equation:

 

 
Diagram 1. Graph of rectangular hyperbola at origin.
 

A rectangular hyperbola has eccentricity  

If hyperbola is expressed as   then:

  • Distance from origin to focus:  
  • Distance from origin to vertex:  
  • Distance from origin to directrix:  
  •  
  •   because  
  • Focus   because  
  • Focus  
  • Vertex   because  
  • Vertex  
  • Directrix 1 has equation:   or  
  • Directrix 2 has equation:   or  


It is obvious that asymptotes are the   axes.

Details

edit
 
Diagram 2: Detail of quadrant 1 of Diagram 1.
 

Diagram 2 shows detail of quadrant 1 of Diagram 1.


  • Distance from origin to Directrix1   distance  
  • Distance from origin to Vertex1   distance  
  • Distance from origin to Focus1   distance  


Line segment  

  • is parallel to conjugate axis,
  • has length of conjugate axis:  
  • has equation:  


Directrix1 has equation:  


Three circles are included for reference:

  • Circle1, green line through point   has equation:  
  • Circle2, magenta line through vertex   has equation:  
  • Circle3, orange line through focus   has equation:  

Examples

edit
Rectangular hyperbola at origin
edit
 
Figure 1: Rectangular hyperbola at origin with transverse axis horizontal.
 

Curve in Figure 1 has equation:  


When   distance  distance 

Vertex   has coordinates   Vertex   has coordinates  


Distance 

Focus   has coordinates   Focus   has coordinates  


Distance 

Point   has coordinates   Point   has coordinates  

Directrix1, directrix through point   has equation  

Directrix2, directrix through point   has equation  


Asymptote1 has equation:  

Asymptote2 has equation:  

Slope of asymptote1:  

Slope of asymptote2:  

Product of slopes:   Asymptotes are perpendicular.

Rectangular hyperbola parallel to Y axis
edit
 
Figure 2: Rectangular hyperbola parallel to Y axis.
 
Curve is   moved from origin to point  

Curve in Figure 2 has equation:  


Center of hyperbola, point   has coordinates  


Distance   distance  

Vertex   has coordinates   Vertex   has coordinates  


Distance   distance  

Focus   has coordinates   Focus   has coordinates  


Distance   distance  

Point   has coordinates   Point   has coordinates  

Directrix1, directrix through point   has equation  

Directrix2, directrix through point   has equation  


 

 


Asymptote1 has equation:  

Asymptote2 has equation:  

Slope of asymptote1:  

Slope of asymptote2:  

Product of slopes:   Asymptotes are perpendicular.

Rectangular hyperbola, random
edit
 
Figure 3: Rectangular hyperbola with random position and orientation.
  
Curve is   moved from origin to point   and rotated.

In all rectangular hyperbolas:
* Point   is mid-point of segment  
* Point   is mid-point of segment  

Curve in Figure 3 has equation:         


Center of hyperbola, point   has coordinates  


Distance   distance  

Vertex   has coordinates   Vertex   has coordinates  


Distance   distance  

Focus   has coordinates   Focus   has coordinates  


Distance   distance  

Point   has coordinates   Point   has coordinates  

Conjugate axis through point   has equation  

Directrix1, directrix through point   has equation  

Directrix2, directrix through point   has equation  


Asymptote1 has equation:  

Asymptote2 has equation:  

Slope of asymptote1:  

Slope of asymptote2:  

Product of slopes:   Asymptotes are perpendicular.

Conic sections generally

edit

Within the two dimensional space of Cartesian Coordinate Geometry a conic section may be located anywhere and have any orientation.

This section examines the parabola, ellipse and hyperbola, showing how to calculate the equation of the conic section, and also how to calculate the foci and directrices given the equation.

Deriving the equation

edit

The curve is defined as a point whose distance to the focus and distance to a line, the directrix, have a fixed ratio, eccentricity   Distance from focus to directrix must be non-zero.

Let the point have coordinates  

Let the focus have coordinates  

Let the directrix have equation   where  

Then    

 

Square both sides:  

Rearrange:  

Expand   simplify, gather like terms and result is:

  where:

 

 

 

 

 

 

 

Note that values   depend on:

  •   non-zero. This method is not suitable for circle where  
  •   Sign of   is not significant.
  •   or   and   produce same result.

For example, directrix   and directrix   produce same result.

Implementation

edit
# python code
import decimal

dD = decimal.Decimal # Decimal object is like a float with (almost) unlimited precision.
dgt = decimal.getcontext()
Precision = dgt.prec = 22


def reduce_Decimal_number(number) :
# This function improves appearance of numbers.
# The technique used here is to perform the calculations using precision of 22,
# then convert to float or int to display result.
# -1e-22 becomes 0.
#  12.34999999999999999999 becomes 12.35
# -1.000000000000000000001 becomes -1.
# 1E+1 becomes 10.
# 0.3333333333333333333333 is unchanged.
#
    thisName = 'reduce_Decimal_number(number) :'
    if type(number) != dD : number = dD(str(number))

    f1 = float(number)
    if (f1 + 1) == 1 : return dD(0)
    if int(f1) == f1 : return dD(int(f1))
        
    dD1 = dD(str(f1))

    t1 = dD1.normalize().as_tuple()
    if (len(t1[1]) < 12) :
        # if number == 12.34999999999999999999, dD1 = 12.35
        return dD1

    return number


def ABCDEF_from_abc_epq (abc,epq,flag = 0) :
    '''
ABCDEF = ABCDEF_from_abc_epq (abc,epq[,flag]) 
    '''
    thisName = 'ABCDEF_from_abc_epq (abc,epq, {}) :'.format(bool(flag))
    a,b,c = [ dD(str(v)) for v in abc ]
    e,p,q = [ dD(str(v)) for v in epq ]

    divider = a**2 + b**2
    if divider == 0 :
        print (thisName, 'At least one of (a,b) must be non-zero.')
        return None
    if divider != 1 :
        root = divider.sqrt()
        a,b,c = [ (v/root) for v in (a,b,c) ]

    distance_from_focus_to_directrix = a*p + b*q + c
    if distance_from_focus_to_directrix == 0 :
        print (thisName, 'distance_from_focus_to_directrix must be non-zero.')
        return None

    X = e*e
    A = X*a**2 - 1
    B = X*b**2 - 1
    C = 2*X*a*b
    D = 2*p + 2*X*a*c
    E = 2*q + 2*X*b*c
    F = X*c**2 - p*p - q*q

    A,B,C,D,E,F = [ reduce_Decimal_number(v) for v in (A,B,C,D,E,F) ]

    if flag :
        print (thisName)
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'.format(A,B,C,D,E,F)
        print (' ', str1)
        
    return (A,B,C,D,E,F)

Examples

edit

Parabola

edit

Every parabola has eccentricity  

 
Quadratic function complies with definition of parabola.
Distance from point   to focus
= distance from point   to directrix = 10.
Distance from point   to focus
= distance from point   to directrix = 1.

Simple quadratic function:

Let focus be point  

Let directrix have equation:   or  

# python code

p,q = 0,1
a,b,c = abc = 0,1,q
epq = 1,p,q

ABCDEF = ABCDEF_from_abc_epq (abc,epq,1)
print ('ABCDEF =', ABCDEF)
(-1)x^2 + (0)y^2 + (0)xy + (0)x + (4)y + (0) = 0
ABCDEF = (Decimal('-1'), Decimal('0'), Decimal('0'), Decimal('0'), Decimal('4'), Decimal('0'))

As conic section curve has equation:  

Curve is quadratic function:   or  

For a quick check select some random points on the curve:

# python code

for x in (-2,4,6) :
    y = x**2/4
    print ('\nFrom point ({}, {}):'.format(x,y))
    distance_to_focus = ((x-p)**2 + (y-q)**2)**.5
    distance_to_directrix = a*x + b*y + c
    s1 = 'distance_to_focus' ; print (s1, eval(s1))
    s1 = 'distance_to_directrix' ; print (s1, eval(s1))
From point (-2, 1.0):
distance_to_focus 2.0
distance_to_directrix 2.0

From point (4, 4.0):
distance_to_focus 5.0
distance_to_directrix 5.0

From point (6, 9.0):
distance_to_focus 10.0
distance_to_directrix 10.0

edit

Curve in Figure 1 below has:

  • Directrix:  
  • Focus:  
  • Equation:   or  

Curve in Figure 2 below has:

  • Directrix:  
  • Focus:  
  • Equation:   or  

Curve in Figure 3 below has:

  • Directrix:  
  • Focus:  
  • Equation:  

Ellipse

edit

Every ellipse has eccentricity  

 
Ellipse with ecccentricity of 0.25 and center at origin.
Point1  
Eccentricity  
For every point on curve,  

A simple ellipse:

Let focus be point   where  

Let directrix have equation:   or  

Let eccentricity  

# python code
p,q = -1,0
e = 0.25
abc = a,b,c = 1,0,16
epq = e,p,q
ABCDEF_from_abc_epq  (abc,epq,1)
(-0.9375)x^2 + (-1)y^2 + (0)xy + (0)x + (0)y + (15) = 0

Ellipse has center at origin and equation:  


Some basic checking:

# python code

points = (
    (-4  ,  0    ),
    (-3.5, -1.875),
    ( 3.5,  1.875),
    (-1  ,  3.75 ),
    ( 1  , -3.75 ),
)

A,B,F = -0.9375, -1, 15

for (x,y) in points :
    # Verify that point is on curve.
    (A*x**2 + B*y**2 + F) and 1/0 # Create exception if sum != 0.
    distance_to_focus = ( (x-p)**2 + (y-q)**2 )**.5
    distance_to_directrix = a*x + b*y + c
    e = distance_to_focus / distance_to_directrix
    s1 = 'x,y' ; print (s1, eval(s1))
    s1 = '    distance_to_focus, distance_to_directrix, e' ; print (s1, eval(s1))
x,y (-4, 0)
    distance_to_focus, distance_to_directrix, e (3.0, 12, 0.25)
x,y (-3.5, -1.875)
    distance_to_focus, distance_to_directrix, e (3.125, 12.5, 0.25)
x,y (3.5, 1.875)
    distance_to_focus, distance_to_directrix, e (4.875, 19.5, 0.25)
x,y (-1, 3.75)
    distance_to_focus, distance_to_directrix, e (3.75, 15.0, 0.25)
x,y (1, -3.75)
    distance_to_focus, distance_to_directrix, e (4.25, 17.0, 0.25)

 
Ellipses with ecccentricities from 0.1 to 0.9.
As eccentricity approaches   shape of ellipse approaches shape of circle.
As eccentricity approaches   shape of ellipse approaches shape of parabola.

The effect of eccentricity.


All ellipses in diagram have:

  • Focus at point  
  • Directrix with equation  


Five ellipses are shown with eccentricities varying from   to  

edit

Curve in Figure 1 below has:

  • Directrix:  
  • Focus:  
  • Eccentricity:  
  • Equation:  

Curve in Figure 2 below has:

  • Directrix:  
  • Focus:  
  • Eccentricity:  
  • Equation:  

Curve in Figure 3 below has:

  • Directrix:  
  • Focus:  
  • Eccentricity:  
  • Equation:  

Hyperbola

edit

Every hyperbola has eccentricity  

 
Hyperbola with eccentricity of 1.5 and center at origin.
Point1  
Eccentricity  
For every point on curve,  

A simple hyperbola:

Let focus be point   where  

Let directrix have equation:   or  

Let eccentricity  

# python code
p,q = 0,-9
e = 1.5
abc = a,b,c = 0,1,4
epq = e,p,q
ABCDEF_from_abc_epq  (abc,epq,1)
(-1)x^2 + (1.25)y^2 + (0)xy + (0)x + (0)y + (-45) = 0

Hyperbola has center at origin and equation:  

Some basic checking:

# python code

four_points = pt1,pt2,pt3,pt4 = (-7.5,9),(-7.5,-9),(22.5,21),(22.5,-21)
for (x,y) in four_points :
    # Verify that point is on curve.
    sum = 1.25*y**2 - x**2 - 45
    sum and 1/0 # Create exception if sum != 0.
    distance_to_focus = ( (x-p)**2 + (y-q)**2 )**.5
    distance_to_directrix = a*x + b*y + c
    e = distance_to_focus / distance_to_directrix
    s1 = 'x,y' ; print (s1, eval(s1))
    s1 = '    distance_to_focus, distance_to_directrix, e' ; print (s1, eval(s1))
x,y (-7.5, 9)
    distance_to_focus, distance_to_directrix, e (19.5, 13.0, 1.5)
x,y (-7.5, -9)
    distance_to_focus, distance_to_directrix, e (7.5, -5.0, -1.5)
x,y (22.5, 21)
    distance_to_focus, distance_to_directrix, e (37.5, 25.0, 1.5)
x,y (22.5, -21)
    distance_to_focus, distance_to_directrix, e (25.5, -17.0, -1.5)

 
Hyperbolas with ecccentricities from 1.5 to 20.
As eccentricity increases, curve approaches directrix:  
As eccentricity approaches   shape of curve approaches shape of parabola.

The effect of eccentricity.


All hyperbolas in diagram have:

  • Focus at point  
  • Directrix with equation  


Six hyperbolas are shown with eccentricities varying from   to  

edit

Curve in Figure 1 below has:

  • Directrix:  
  • Focus:  
  • Eccentricity:  
  • Equation:  

Curve in Figure 2 below has:

  • Directrix:  
  • Focus:  
  • Eccentricity:  
  • Equation:  

Curve in Figure 3 below has:

  • Directrix:  
  • Focus:  
  • Eccentricity:  
  • Equation:  

Reversing the process

edit

The expression "reversing the process" means calculating the values of   focus and directrix when given the equation of the conic section, the familiar values  

Consider the equation of a simple ellipse:   This is a conic section where  

This ellipse may be expressed as   a format more appealing to the eye than numbers containing fractions or decimals.

However, when this ellipse is expressed as   this format is the ellipse expressed in "standard form," a notation that greatly simplifies the calculation of  

Modify the equations for   slightly:

  or  

  or  

 

 

In   substitute for    

  is a quadratic equation in   where:

 

 

 

Because   is a quadratic equation, the solution of   may contain an unwanted value of   that will be eliminated later.

From   and  

 

 

Because  

Implementation

edit
# python code


def solve_quadratic (abc) :
    '''
result = solve_quadratic (abc)
result may be :
    []
    [ root1 ]
    [ root1, root2 ]
'''
    a,b,c = abc

    if a == 0 : return [ -c/b ]
    
    disc = b**2 - 4*a*c
    
    if disc < 0 : return []

    two_a = 2*a
    if disc == 0 : return [ -b/two_a ]

    root = disc.sqrt()
    r1,r2 = (-b - root)/two_a, (-b + root)/two_a
    return [r1,r2]


def calculate_Kab (ABC, flag=0) :
    '''
result = calculate_Kab (ABC)
result may be :
    []
    [tuple1]
    [tuple1,tuple2]
'''
    thisName = 'calculate_Kab (ABC, {}) :'.format(bool(flag))
    A_,B_,C_ = [ dD(str(v)) for v in ABC ]
    # Quadratic function in K: (a_)K**2 + (b_)K + (c_) = 0
    a_ = 4*A_*B_ - C_*C_
    b_ = 4*(A_+B_)
    c_ = 4

    values_of_K = solve_quadratic ((a_,b_,c_))

    if flag :
        print (thisName)
        str1 = '  A_,B_,C_' ; print (str1,eval(str1))
        str1 = '  a_,b_,c_' ; print (str1,eval(str1))
        print ('  y = ({})x^2 + ({})x + ({})'.format( float(a_), float(b_), float(c_) ))
        str1 = '  values_of_K' ; print (str1,eval(str1))

    output = []
    for K in values_of_K :
        A,B,C = [ reduce_Decimal_number(v*K) for v in (A_,B_,C_) ]
        X = A + B + 2
        if X <= 0 :
            # Here is one place where the spurious value of K may be eliminated.
            if flag : print ('  K = {}, X = {}, continuing.'.format(K, X))
            continue

        aa = reduce_Decimal_number((A + 1)/X)

        if flag :
            print ('  K =', K)
            for strx in ('A', 'B', 'C', 'X', 'aa') :
                print ('   ', strx, eval(strx))

        if aa == 0 :
            a = dD(0) ; b = dD(1)
        else :
            a = aa.sqrt() ; b = C/(2*X*a)
        
        Kab = [ reduce_Decimal_number(v) for v in (K,a,b) ]
        output += [ Kab ]
    if flag:
        print (thisName)
        for t in range (0, len(output)) :
            str1 = '  output[{}] = {}'.format(t,output[t])
            print (str1)
    return output

More calculations

edit

The values  

 

 

 

 

In   replace  

Expand   simplify, gather like terms and result is quadratic function in  

  where:

 

  Therefore:

 

 

 

For parabola, there is one value of   because there is one directrix.

For ellipse and hyperbola, there are two values of   because there are two directrices.

Implementation

edit
# python code

def compare_ABCDEF1_ABCDEF2 (ABCDEF1, ABCDEF2) :
    '''
status = compare_ABCDEF1_ABCDEF2 (ABCDEF1, ABCDEF2)

This function compares the two conic sections.
"0.75x^2 + y^2 + 3 = 0" and "3x^2 + 4y^2 + 12 = 0" compare as equal.
"0.75x^2 + y^2 + 3 = 0" and "3x^2 + 4y^2 + 10 = 0" compare as not equal.

(0.24304)x^2 + (1.49296)y^2 + (-4.28544)xy + (159.3152)x + (-85.1136)y + (2858.944) = 0
            and
(-0.0784)x^2 + (-0.4816)y^2 + (1.3824)xy + (-51.392)x + (27.456)y + (-922.24) = 0
            are verified as the same curve.

>>> abcdef1 = (0.24304, 1.49296, -4.28544, 159.3152, -85.1136, 2858.944)
>>> abcdef2 = (-0.0784, -0.4816, 1.3824, -51.392, 27.456, -922.24)
>>> [ (v[0]/v[1]) for v in zip(abcdef1, abcdef2) ]
[-3.1, -3.1, -3.1, -3.1, -3.1, -3.1]
set ([-3.1, -3.1, -3.1, -3.1, -3.1, -3.1]) = {-3.1}
'''
    thisName = 'compare_ABCDEF1_ABCDEF2 (ABCDEF1, ABCDEF2) :'

    # For each value in ABCDEF1, ABCDEF2, both value1 and value2 must be 0
    # or both value1 and value2 must be non-zero.
    for v1,v2 in zip (ABCDEF1, ABCDEF2) :
        status = (bool(v1) == bool(v2))
        if not status :
            print (thisName)
            print ('  mismatch:',v1,v2)
            return status

    # Results of v1/v2 must all be the same.
    set1 = { (v1/v2) for (v1,v2) in zip (ABCDEF1, ABCDEF2) if v2 }
    status = (len(set1) == 1)
    if status : quotient, = list(set1)
    else : quotient = '??'
    
    L1 = [] ; L2 = [] ; L3 = []

    for m in range (0,6) :
        bottom = ABCDEF2[m]
        if not bottom : continue
        top = ABCDEF1[m]
        L1 += [ str(top) ] ; L3 += [ str(bottom) ]
    for m in range (0,len(L1)) :
        L2 += [ (sorted( [ len(v) for v in (L1[m], L3[m]) ] ))[-1] ] # maximum value.
    for m in range (0,len(L1)) :
        max = L2[m]
        L1[m] = ( (' '*max)+L1[m] )[-max:] # string right justified.
        L2[m] = ( '-'*max )
        L3[m] = ( (' '*max)+L3[m] )[-max:] # string right justified.
    print ('   ', '   '.join(L1))
    print ('   ', ' = '.join(L2), '=', quotient)
    print ('   ', '   '.join(L3))
    return status


def calculate_abc_epq (ABCDEF_, flag = 0) :
    '''
result = calculate_abc_epq (ABCDEF_ [, flag])
For parabola, result is:
    [((a,b,c), (e,p,q))]
For ellipse or hyperbola, result is:
    [((a1,b1,c1), (e,p1,q1)), ((a2,b2,c2), (e,p2,q2))]
'''

    thisName = 'calculate_abc_epq (ABCDEF, {}) :'.format(bool(flag))

    ABCDEF = [ dD(str(v)) for v in ABCDEF_ ]
    if flag :
        v1,v2,v3,v4,v5,v6 = ABCDEF
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'.format(v1,v2,v3,v4,v5,v6)
        print('\n' + thisName, 'enter')
        print(str1)

    result = calculate_Kab (ABCDEF[:3], flag)

    output = []
    for (K,a,b) in result :
        A,B,C,D,E,F = [ reduce_Decimal_number(K*v) for v in ABCDEF ]

        X = A + B + 2
        e = X.sqrt()
        # Quadratic function in c: (a_)c**2 + (b_)c + (c_) = 0
        # Directrix has equation: ax + by + c = 0.
        a_ = 4*X*( 1 - X  )
        b_ = 4*X*( D*a + E*b )
        c_ = -D*D - E*E - 4*F
        
        values_of_c = solve_quadratic((a_,b_,c_))
        # values_of_c may be empty in which case this value of K is not used.

        for c in values_of_c :
            p = (D - 2*X*a*c)/2
            q = (E - 2*X*b*c)/2
            abc = [ reduce_Decimal_number(v) for v in (a,b,c) ]
            epq = [ reduce_Decimal_number(v) for v in (e,p,q) ]
            output += [ (abc,epq) ]
        if flag :
            print (thisName)
            str1 = '  ({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'.format(A,B,C,D,E,F)
            print (str1)
            if values_of_c : str1 = '  K = {}. values_of_c = {}'.format(K, values_of_c)
            else : str1 = '  K = {}. values_of_c = {}'.format(K, 'EMPTY')
            print (str1)
    if len(output) not in (1,2) :
        # This should be impossible.
        print (thisName)
        print ('  Internal error: len(output) =', len(output))
        1/0

    if flag :
        # Check output and print results.

        L1 = []
        for ((a,b,c),(e,p,q)) in output :
            print ('  e =',e)
            print ('    directrix: ({})x + ({})y + ({}) = 0'.format(a,b,c) )
            print ('    for focus : p, q = {}, {}'.format(p,q))
            # A small circle at focus for grapher.
            print ('    (x - ({}))^2 + (y - ({}))^2 = 1'.format(p,q))

            # normal through focus :
            a_,b_ = b,-a
            # normal through focus : a_ x + b_ y + c_ = 0
            c_ = reduce_Decimal_number(-(a_*p + b_*q))
            print ('    normal through focus: ({})x + ({})y + ({}) = 0'.format(a_,b_,c_) )
            L1 += [ (a_,b_,c_) ]

            _ABCDEF = ABCDEF_from_abc_epq ((a,b,c),(e,p,q))
            # This line checks that values _ABCDEF, ABCDEF make sense when compared against each other.
            if not compare_ABCDEF1_ABCDEF2 (_ABCDEF, ABCDEF) :
                print ('    _ABCDEF =',_ABCDEF)
                print ('    ABCDEF =',ABCDEF)
                2/0
        # This piece of code checks that normal through one focus is same as normal through other focus.
        # Both of these normals, if there are 2, should be same line.
        # It also checks that 2 directrices, if there are 2, are parallel.
        set2 = set(L1)
        if len(set2) != 1 :
            print ('    set2 =',set2)
            3/0

    return output

Examples

edit

Parabola

edit
 
Graph of parabola  
Equation of parabola is given.
This section calculates  

Given equation of conic section:  

Calculate  

# python code

input = ( 16, 9, -24, 410, -420, 3175 )

(abc,epq), = calculate_abc_epq  (input)

s1 = 'abc' ; print (s1, eval(s1))
s1 = 'epq' ; print (s1, eval(s1))
abc [Decimal('0.6'), Decimal('0.8'), Decimal('3')]
epq [Decimal('1'), Decimal('-10'), Decimal('6')]

interpreted as:

Directrix:  

Eccentricity:  

Focus:  

Because eccentricity is   curve is parabola.

Because curve is parabola, there is one directrix and one focus.

For more insight into the method of calculation and also to check the calculation:

calculate_abc_epq  (input, 1) # Set flag to 1.
calculate_abc_epq (ABCDEF, True) : enter
(16)x^2 + (9)y^2 + (-24)xy + (410)x + (-420)y + (3175) = 0 # This equation of parabola is not in standard form.
calculate_Kab (ABC, True) :
  A_,B_,C_ (Decimal('16'), Decimal('9'), Decimal('-24'))
  a_,b_,c_ (Decimal('0'), Decimal('100'), 4)
  y = (0.0)x^2 + (100.0)x + (4.0)
  values_of_K [Decimal('-0.04')]
  K = -0.04
    A -0.64
    B -0.36
    C 0.96
    X 1.00
    aa 0.36
calculate_Kab (ABC, True) :
  output[0] = [Decimal('-0.04'), Decimal('0.6'), Decimal('0.8')]
calculate_abc_epq (ABCDEF, True) :
  (-0.64)x^2 + (-0.36)y^2 + (0.96)xy + (-16.4)x + (16.8)y + (-127) = 0 # This is equation of parabola in standard form.
  K = -0.04. values_of_c = [Decimal('3')]
  e = 1
    directrix: (0.6)x + (0.8)y + (3) = 0
    for focus : p, q = -10, 6
    (x - (-10))^2 + (y - (6))^2 = 1
    normal through focus: (0.8)x + (-0.6)y + (11.6) = 0
    # This is proof that equation supplied and equation in standard form are same curve.
    -0.64   -0.36   0.96   -16.4   16.8   -127
    ----- = ----- = ---- = ----- = ---- = ---- = -0.04 # K
       16       9    -24     410   -420   3175

Ellipse

edit
 
Graph of ellipse  
Equation of ellipse is given.
This section calculates  

Given equation of conic section:  

Calculate  

# python code

input = ( 481, 369, -384, 5190, 5670, 7650 )

(abc1,epq1),(abc2,epq2) = calculate_abc_epq  (input)

s1 = 'abc1' ; print (s1, eval(s1))
s1 = 'epq1' ; print (s1, eval(s1))
s1 = 'abc2' ; print (s1, eval(s1))
s1 = 'epq2' ; print (s1, eval(s1))
abc1 [Decimal('0.6'), Decimal('0.8'), Decimal('-3')]
epq1 [Decimal('0.8'), Decimal('-3'), Decimal('-3')]
abc2 [Decimal('0.6'), Decimal('0.8'), Decimal('37')]
epq2 [Decimal('0.8'), Decimal('-18.36'), Decimal('-23.48')]

interpreted as:

Directrix 1:  

Eccentricity:  

Focus 1:  

Directrix 2:  

Eccentricity:  

Focus 2:  

Because eccentricity is   curve is ellipse.

Because curve is ellipse, there are two directrices and two foci.

For more insight into the method of calculation and also to check the calculation:

calculate_abc_epq  (input, 1) # Set flag to 1.
calculate_abc_epq (ABCDEF, True) : enter
(481)x^2 + (369)y^2 + (-384)xy + (5190)x + (5670)y + (7650) = 0 # Not in standard form.
calculate_Kab (ABC, True) :
  A_,B_,C_ (Decimal('481'), Decimal('369'), Decimal('-384'))
  a_,b_,c_ (Decimal('562500'), Decimal('3400'), 4)
  y = (562500.0)x^2 + (3400.0)x + (4.0)
  values_of_K [Decimal('-0.004444444444444444444444'), Decimal('-0.0016')]
  # Unwanted value of K is rejected here.
  K = -0.004444444444444444444444, X = -1.777777777777777777778, continuing.
  K = -0.0016
    A -0.7696
    B -0.5904
    C 0.6144
    X 0.6400
    aa 0.36
calculate_Kab (ABC, True) :
  output[0] = [Decimal('-0.0016'), Decimal('0.6'), Decimal('0.8')]
calculate_abc_epq (ABCDEF, True) :
  # Equation of ellipse in standard form.
  (-0.7696)x^2 + (-0.5904)y^2 + (0.6144)xy + (-8.304)x + (-9.072)y + (-12.24) = 0
  K = -0.0016. values_of_c = [Decimal('-3'), Decimal('37')]
  e = 0.8
    directrix: (0.6)x + (0.8)y + (-3) = 0
    for focus : p, q = -3, -3
    (x - (-3))^2 + (y - (-3))^2 = 1
    normal through focus: (0.8)x + (-0.6)y + (0.6) = 0
    # Method calculates equation of ellipse using these values of directrix, eccentricity and focus.
    # Method then verifies that calculated and supplied values are the same curve.
    -0.7696   -0.5904   0.6144   -8.304   -9.072   -12.24
    ------- = ------- = ------ = ------ = ------ = ------ = -0.0016 # K
        481       369     -384     5190     5670     7650
  e = 0.8
    directrix: (0.6)x + (0.8)y + (37) = 0
    for focus : p, q = -18.36, -23.48
    (x - (-18.36))^2 + (y - (-23.48))^2 = 1
    normal through focus: (0.8)x + (-0.6)y + (0.6) = 0 # Same as normal above.
    # Method calculates equation of ellipse using these values of directrix, eccentricity and focus.
    # Method then verifies that calculated and supplied values are the same curve.
    -0.7696   -0.5904   0.6144   -8.304   -9.072   -12.24
    ------- = ------- = ------ = ------ = ------ = ------ = -0.0016 # K
        481       369     -384     5190     5670     7650

Hyperbola

edit
 
Graph of hyperbola  
Equation of hyperbola is given.
This section calculates  

Given equation of conic section:  

Calculate  

# python code

input = ( 7, 0, -24, 90, 216, -81 )

(abc1,epq1),(abc2,epq2) = calculate_abc_epq  (input)

s1 = 'abc1' ; print (s1, eval(s1))
s1 = 'epq1' ; print (s1, eval(s1))
s1 = 'abc2' ; print (s1, eval(s1))
s1 = 'epq2' ; print (s1, eval(s1))
abc1 [Decimal('0.6'), Decimal('0.8'), Decimal('-3')]
epq1 [Decimal('1.25'), Decimal('0'), Decimal('-3')]
abc2 [Decimal('0.6'), Decimal('0.8'), Decimal('-22.2')]
epq2 [Decimal('1.25'), Decimal('18'), Decimal('21')]

interpreted as:

Directrix 1:  

Eccentricity:  

Focus 1:  

Directrix 2:  

Eccentricity:  

Focus 2:  

Because eccentricity is   curve is hyperbola.

Because curve is hyperbola, there are two directrices and two foci.

For more insight into the method of calculation and also to check the calculation:

calculate_abc_epq  (input, 1) # Set flag to 1.
calculate_abc_epq (ABCDEF, True) : enter
# Given equation is not in standard form.
(7)x^2 + (0)y^2 + (-24)xy + (90)x + (216)y + (-81) = 0
calculate_Kab (ABC, True) :
  A_,B_,C_ (Decimal('7'), Decimal('0'), Decimal('-24'))
  a_,b_,c_ (Decimal('-576'), Decimal('28'), 4)
  y = (-576.0)x^2 + (28.0)x + (4.0)
  values_of_K [Decimal('0.1111111111111111111111'), Decimal('-0.0625')]
  K = 0.1111111111111111111111
    A 0.7777777777777777777777
    B 0
    C -2.666666666666666666666
    X 2.777777777777777777778
    aa 0.64
  K = -0.0625
    A -0.4375
    B 0
    C 1.5
    X 1.5625
    aa 0.36
calculate_Kab (ABC, True) :
  output[0] = [Decimal('0.1111111111111111111111'), Decimal('0.8'), Decimal('-0.6')]
  output[1] = [Decimal('-0.0625'), Decimal('0.6'), Decimal('0.8')]
calculate_abc_epq (ABCDEF, True) :
  # Here is where unwanted value of K is rejected.
  (0.7777777777777777777777)x^2 + (0)y^2 + (-2.666666666666666666666)xy + (10)x + (24)y + (-9) = 0
  K = 0.1111111111111111111111. values_of_c = EMPTY
calculate_abc_epq (ABCDEF, True) :
  # Equation of hyperbola in standard form.
  (-0.4375)x^2 + (0)y^2 + (1.5)xy + (-5.625)x + (-13.5)y + (5.0625) = 0
  K = -0.0625. values_of_c = [Decimal('-3'), Decimal('-22.2')]
  e = 1.25
    directrix: (0.6)x + (0.8)y + (-3) = 0
    for focus : p, q = 0, -3
    (x - (0))^2 + (y - (-3))^2 = 1
    normal through focus: (0.8)x + (-0.6)y + (-1.8) = 0
    # Method calculates equation of hyperbola using these values of directrix, eccentricity and focus.
    # Method then verifies that calculated and given values are the same curve.
    -0.4375   1.5   -5.625   -13.5   5.0625
    ------- = --- = ------ = ----- = ------ = -0.0625 # K
          7   -24       90     216      -81
  e = 1.25
    directrix: (0.6)x + (0.8)y + (-22.2) = 0
    for focus : p, q = 18, 21
    (x - (18))^2 + (y - (21))^2 = 1
    normal through focus: (0.8)x + (-0.6)y + (-1.8) = 0 # Same as normal above.
    # Method calculates equation of hyperbola using these values of directrix, eccentricity and focus.
    # Method then verifies that calculated and given values are the same curve.
    -0.4375   1.5   -5.625   -13.5   5.0625
    ------- = --- = ------ = ----- = ------ = -0.0625 # K
          7   -24       90     216      -81

Slope of curve

edit

Given equation of conic section:  

differentiate both sides with respect to  


 

 

 

 


 


For slope horizontal:  

For slope vertical:  

For given slope  

 

 

 

Implementation

edit
# python code

def three_slopes (ABCDEF, slope, flag = 0) :
    '''
equation1, equation2, equation3 = three_slopes (ABCDEF, slope[, flag]) 
equation1 is equation for slope horizontal.
equation2 is equation for slope vertical.
equation3 is equation for slope supplied.
All equations are in format (a,b,c) where ax + by + c = 0.
    '''
    A,B,C,D,E,F = ABCDEF
    output = []

    abc = 2*A, C, D ; output += [ abc ]
    abc = C, 2*B, E ; output += [ abc ]

    m = slope
    # m(Cx + 2By + E) = -2Ax - Cy - D
    # mCx + m2By + mE = -2Ax - Cy - D
    # mCx + 2Ax + m2By + Cy + mE + D = 0
    abc = m*C + 2*A, m*2*B + C, m*E + D ; output += [ abc ]

    if flag :
        str1 = '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'.format (A,B,C,D,E,F)
        print (str1)
        a,b,c = output[0]
        str1 = 'For slope horizontal: ({})x + ({})y + ({}) = 0'.format (a,b,c)
        print (str1)
        a,b,c = output[1]
        str1 = 'For slope vertical: ({})x + ({})y + ({}) = 0'.format (a,b,c)
        print (str1)
        a,b,c = output[2]
        str1 = 'For slope {}: ({})x + ({})y + ({}) = 0'.format (slope, a,b,c)
        print (str1)
        
    return output

Examples

edit

Quadratic function

edit
y = f(x)
edit
 
Graph of quadratic function  
At intersection of   and curve, slope =  .
At intersection of   and curve, slope =  .
Slope of curve is never vertical.

Consider conic section:  

This is quadratic function:  

Slope of this curve:  

Produce values for slope horizontal, slope vertical and slope  

# python code

ABCDEF = A,B,C,D,E,F = -1,0,0,14,4,39 # quadratic 
three_slopes (ABCDEF, 5, 1)
(-1)x^2 + (0)y^2 + (0)xy + (14)x + (4)y + (39) = 0
For slope horizontal: (-2)x + (0)y + (14) = 0  # x = 7
For slope vertical: (0)x + (0)y + (4) = 0      # This does not make sense. 
                                               # Slope is never vertical. 
For slope 5: (-2)x + (0)y + (34) = 0           # x = 17.

Check results:

# python code

for x in (7,17) :
    m = (2*x - 14)/4
    s1 = 'x,m' ; print (s1, eval(s1))
x,m (7, 0.0)   # When x = 7, slope = 0. 
x,m (17, 5.0)  # When x = 17, slope = 5.

x = f(y)
edit
 
Graph of quadratic function  
At intersection of   and curve, slope is vertical.
At intersection of   and curve, slope =  .
Slope of curve is never horizontal.

Consider conic section:  

This is quadratic function:  

Slope of this curve:  

 

Produce values for slope horizontal, slope vertical and slope  

# python code

ABCDEF = A,B,C,D,E,F = 0,-1,0,-4,-14,-5 # quadratic x = f(y)
three_slopes (ABCDEF, 0.5, 1)
(0)x^2 + (-1)y^2 + (0)xy + (-4)x + (-14)y + (-5) = 0
For slope horizontal: (0)x + (0)y + (-4) = 0    # This does not make sense.
                                                # Slope is never horizontal.
For slope vertical: (0)x + (-2)y + (-14) = 0    # y = -7
For slope 0.5: (0.0)x + (-1.0)y + (-11.0) = 0   # y = -11

Check results:

# python code

for y in (-7,-11) :
    top = -4 ; bottom = 2*y + 14
    if bottom == 0 :
        print ('y,m',y,'{}/{}'.format(top,bottom))
        continue
    m = top/bottom
    s1 = 'y,m' ; print (s1, eval(s1))
y,m -7 -4/0     # When y = -7, slope is vertical.
y,m (-11, 0.5)  # When y = -11, slope is 0.5.

Parabola

edit
 
Graph of parabola  
At intersection of   and curve, slope is horizontal.
At intersection of   and curve, slope is vertical.
At intersection of   and curve, slope =  .
Slope of curve is never   because axis has slope   and curve is never parallel to axis.

Consider conic section:  

This curve is a parabola.


Produce values for slope horizontal, slope vertical and slope  

# python code

ABCDEF = A,B,C,D,E,F = 9,16,-24,104,28,-144 # parabola
three_slopes (ABCDEF, 2, 1)
(9)x^2 + (16)y^2 + (-24)xy + (104)x + (28)y + (-144) = 0
For slope horizontal: (18)x + (-24)y + (104) = 0
For slope vertical: (-24)x + (32)y + (28) = 0
For slope 2: (-30)x + (40)y + (160) = 0

Because all 3 lines are parallel to axis, all 3 lines have slope  


Produce values for slope horizontal, slope vertical and slope  

# python code

three_slopes (ABCDEF, 0.75, 1)
(9)x^2 + (16)y^2 + (-24)xy + (104)x + (28)y + (-144) = 0
For slope horizontal: (18)x + (-24)y + (104) = 0 # Same as above.
For slope vertical: (-24)x + (32)y + (28) = 0    # Same as above.
For slope 0.75: (0.0)x + (0.0)y + (125.0) = 0    # Impossible.

Axis has slope   and curve is never parallel to axis.

Ellipse

edit
 
Graph of ellipse  
At intersection of   and curve, slope is horizontal.
At intersection of   and curve, slope is vertical.
At intersection of   and curve, slope =  

Consider conic section:  

This curve is an ellipse.


Produce values for slope horizontal, slope vertical and slope  

# python code

ABCDEF = A,B,C,D,E,F = 1771, 1204, 1944, -44860, -18520, 214400 # ellipse
three_slopes (ABCDEF, -1, 1)
(1771)x^2 + (1204)y^2 + (1944)xy + (-44860)x + (-18520)y + (214400) = 0
For slope horizontal: (3542)x + (1944)y + (-44860) = 0
For slope vertical: (1944)x + (2408)y + (-18520) = 0
For slope -1: (1598)x + (-464)y + (-26340) = 0

Because curve is closed loop, slope of curve may be any value including  

If slope of curve is given as   it means that curve is vertical at that point and tangent to curve has equation  

For any given slope there are always 2 points on opposite sides of curve where tangent to curve at each of those points has the given slope.

Hyperbola

edit
 
Graph of hyperbola  
At intersection of   and curve, slope is horizontal.
  and curve do not intersect. Slope is never vertical.
At intersection of   and curve, slope =  

Consider conic section:  

This curve is a hyperbola.


Produce values for slope horizontal, slope vertical and slope  

# python code

ABCDEF = A,B,C,D,E,F = -351, 176, -336, 4182, -3824, -16231 # hyperbola
three_slopes (ABCDEF, 2, 1)
(-351)x^2 + (176)y^2 + (-336)xy + (4182)x + (-3824)y + (-16231) = 0
For slope horizontal: (-702)x + (-336)y + (4182) = 0
For slope vertical: (-336)x + (352)y + (-3824) = 0
For slope 2: (-1374)x + (368)y + (-3466) = 0

Latera recta et cetera

edit

"Latus rectum" is a Latin expression meaning "straight side." According to Google, the Latin plural of "latus rectum" is "latera recta," but English allows "latus rectums" or possibly "lati rectums." The title of this section is poetry to the eyes and music to the ears of a Latin student and this author hopes that the gentle reader will permit such poetic licence in a mathematical topic.

The translation of the title is "Latus rectums and other things." This section describes the calculation of interesting items associated with the ellipse: latus rectums, major axis, minor axis, focal chords, directrices and various points on these lines.


When given the equation of an ellipse, the first thing is to calculate eccentricity, foci and directrices as shown above. Then verify that the curve is in fact an ellipse.

From these values everything about the ellipse may be calculated. For example:

 
Graph of ellipse  

Axis : (-0.8)x + (-0.6)y + (9.4) = 0
Eccentricity = 0.9

Directrix 2 : (0.6)x + (-0.8)y + (2) = 0
Latus rectum RS : (0.6)x + (-0.8)y + (-0.8) = 0
Minor axis : (0.6)x + (-0.8)y + (-12.73684210526315789474) = 0
Latus rectum PU : (0.6)x + (-0.8)y + (-24.67368421052631578947) = 0
Directrix 1 : (0.6)x + (-0.8)y + (-27.47368421052631578947) = 0

  = (6.32, 7.24)
  = (7.204210526315789473684, 6.061052631578947368421)
F2 = (8, 5)
M = (15.16210526315789473684, -4.54947368421052631579)
F1 = (22.32421052631578947368, -14.09894736842105263158)
  = (23.12, -15.16)
  = (24.00421052631578947368, -16.33894736842105263158)

P = (20.30821052631578947368, -15.61094736842105263158)
Q = (10.53708406832736953616, -8.018239580333420216299)
R = (5.984, 3.488)
S = (10.016, 6.512)
T = (19.78712645798841993752, -1.080707788087632415281)
U = (24.34021052631578947368, -12.58694736842105263158)

Distance between directrices:   = 29.47368421052631578947
Length of major axis:   = 26.52631578947368421052
Distance between foci:   = 23.87368421052631578947
Length of minor axis: QT = 11.56255298707631300170
Length of latus rectum: RS = PU = 5.04

Consider conic section:  

This curve is ellipse with random orientation.

# python code

ABCDEF = A,B,C,D,E,F = 1771, 1204, 1944, -44860, -18520, 214400 # ellipse

result = calculate_abc_epq(ABCDEF)
(len(result) == 2) or 1/0

# ellipse or hyperbola
(abc1,epq1), (abc2,epq2) = result
a1,b1,c1 = abc1 ; e1,p1,q1 = epq1
a2,b2,c2 = abc2 ; e2,p2,q2 = epq2
(e1 == e2) or 2/0
(1 > e1 > 0) or 3/0

print ( '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'.format(A,B,C,D,E,F) )
A,B,C,D,E,F = ABCDEF_from_abc_epq(abc1,epq1)
print ('Equation of ellipse in standard form:')
print ( '({})x^2 + ({})y^2 + ({})xy + ({})x + ({})y + ({}) = 0'.format(A,B,C,D,E,F) )
(1771)x^2 + (1204)y^2 + (1944)xy + (-44860)x + (-18520)y + (214400) = 0
Equation of ellipse in standard form:
(-0.7084)x^2 + (-0.4816)y^2 + (-0.7776)xy + (17.944)x + (7.408)y + (-85.76) = 0
# python code
def sum_zero(input) :
    '''
sum = sum_zero(input)
If sum is close to 0 and Tolerance permits, sum is returned as 0.
For example: if input contains (2, -1.999999999999999999999)
this function returns sum of these 2 values as 0.
    '''
    global Tolerance
    sump = sumn = 0
    for v in input :
        if v > 0 : sump += v
        elif v < 0 : sumn -= v
    sum = sump - sumn
    if abs(sum) < Tolerance : return (type(Tolerance))(0)
    min, max = sorted((sumn,sump))
    if abs(sum) <= Tolerance*min : return (type(Tolerance))(0)
    return sum

Major axis

edit
# axis is perpendicular to directrix.
ax,bx = b1,-a1
# axis contains foci. ax + by + c = 0
cx = reduce_Decimal_number(-(ax*p1 + bx*q1))
axis = ax,bx,cx
print ( '    Axis : ({})x + ({})y + ({}) = 0'.format(ax,bx,cx) )
print ( '    Eccentricity = {}'.format(e1) )
print ()
print ( '    Directrix 1 : ({})x + ({})y + ({}) = 0'.format(a1,b1,c1) )
print ( '    Directrix 2 : ({})x + ({})y + ({}) = 0'.format(a2,b2,c2) )
print ( '    Distance between directrices = {}'.format(abs(c1-c2)) )
F1 = p1,q1 # Focus 1.
print ( '    F1 : ({}, {})'.format(p1,q1) )
F2 = p2,q2 # Focus 2.
print ( '    F2 : ({}, {})'.format(p2,q2) )

#  Direction cosines along axis from F1 towards F2:
dx,dy = a1,b1

# p2 = p1 + dx*distance_F1_F2
# q2 = q1 + dy*distance_F1_F2
if dx : distance_F1_F2 = (p2 - p1)/dx
else :  distance_F1_F2 = (q2 - q1)
if distance_F1_F2 < 0 :
    distance_F1_F2 *= -1
    dx *= -1 ; dy *= -1
print ( '    Distance between foci = {}'.format(distance_F1_F2) )

# Intercept on directrix1
distance_from_F1_to_ID1 = abs(a1*p1 + b1*q1 + c1)
ID1 = xID1,yID1 = p1 - dx*distance_from_F1_to_ID1, q1 - dy*distance_from_F1_to_ID1
print ( '    Intercept ID1 : ({}, {})'.format(xID1,yID1) )

# 
# distance_F1_F2
# -------------------- = e
# length_of_major_axis
# 
length_of_major_axis = distance_F1_F2 / e1

# Intercept1 on curve
distance_from_F1_to_curve = (length_of_major_axis - distance_F1_F2 )/2

xI1,yI1 = p1 - dx*distance_from_F1_to_curve, q1 - dy*distance_from_F1_to_curve
I1 = xI1,yI1 = [ reduce_Decimal_number(v) for v in (xI1,yI1) ]
print ( '    Intercept I1 : ({}, {})'.format(xI1,yI1) )
    Axis : (-0.8)x + (-0.6)y + (9.4) = 0
    Eccentricity = 0.9

    Directrix 1 : (0.6)x + (-0.8)y + (-27.47368421052631578947) = 0
    Directrix 2 : (0.6)x + (-0.8)y + (2) = 0
    Distance between directrices = 29.47368421052631578947
    F1 : (22.32421052631578947368, -14.09894736842105263158)
    F2 : (8, 5)
    Distance between foci = 23.87368421052631578947
    Intercept ID1 : (24.00421052631578947368, -16.33894736842105263158)
    Intercept I1 : (23.12, -15.16)

Techniques similar to above can be used to calculate points  

Latus rectums

edit
# direction cosines along latus rectum.
dlx,dly = -dy,dx
# 
# distance from U to F1               half_latus_rectum
# ------------------------------ = ----------------------- = e1
# distance from U to directrix 1   distance_from_F1_to_ID1
# 
half_latus_rectum = reduce_Decimal_number(e1*distance_from_F1_to_ID1)
# latus rectum 1
# Focal chord has equation (afc)x + (bfc)y + (cfc) = 0.
afc,bfc = a1,b1
cfc = reduce_Decimal_number(-(afc*p1 + bfc*q1))
print ( '    Focal chord PU : ({})x + ({})y + ({}) = 0'.format(afc,bfc,cfc) )
        
P = xP,yP = p1 + dlx*half_latus_rectum, q1 + dly*half_latus_rectum
print ( '    Point P : ({}, {})'.format(xP,yP) )
U = xU,yU = p1 - dlx*half_latus_rectum, q1 - dly*half_latus_rectum
print ( '    Point U : ({}, {})'.format(xU,yU) )
distance = reduce_Decimal_number(( (xP - xU)**2 + (yP - yU)**2 ).sqrt())
print ('    Length PU =', distance)
print ('    half_latus_rectum =', half_latus_rectum)
    Focal chord PU : (0.6)x + (-0.8)y + (-24.67368421052631578947) = 0
    Point P : (20.30821052631578947368, -15.61094736842105263158)
    Point U : (24.34021052631578947368, -12.58694736842105263158)
    Length PU = 5.04
    half_latus_rectum = 2.52

Techniques similar to above can be used to calculate points  

Minor axis

edit
print ()

# Mid point between F1, F2:
M = xM,yM = (p1 + p2)/2, (q1 + q2)/2
print ( '    Mid point M : ({}, {})'.format(xM,yM) )
half_major  = length_of_major_axis / 2
half_distance = distance_F1_F2 / 2

# half_distance**2 + half_minor**2 = half_major**2
half_minor = ( half_major**2 - half_distance**2 ).sqrt()
length_of_minor_axis = half_minor * 2
        
Q = xQ,yQ = xM + dlx*half_minor,  yM + dly*half_minor
T = xT,yT = xM - dlx*half_minor,  yM - dly*half_minor
print ( '    Point Q : ({}, {})'.format(xQ,yQ) )
print ( '    Point T : ({}, {})'.format(xT,yT) )

print ('    length_of_major_axis =', length_of_major_axis)
print ('    length_of_minor_axis =', length_of_minor_axis)
# 
# A basic check.
# length_of_minor_axis**2 = (length_of_major_axis**2)(1-e**2)
# 
# length_of_minor_axis**2
# ----------------------- = 1-e**2
# length_of_major_axis**2
# 
# length_of_minor_axis**2
# ----------------------- + (e**2 - 1) = 0
# length_of_major_axis**2
# 
values = (length_of_minor_axis/length_of_major_axis)**2, e1**2 - 1
sum_zero(values) and 3/0
        
aM,bM = a1,b1 # Minor axis is parallel to directrix.
cM = reduce_Decimal_number(-(aM*xM + bM*yM))
print ( '    Minor axis : ({})x + ({})y + ({}) = 0'.format(aM,bM,cM) )
    Mid point M : (15.16210526315789473684, -4.54947368421052631579)
    Point Q : (10.53708406832736953616, -8.018239580333420216299)
    Point T : (19.78712645798841993752, -1.080707788087632415281)
    length_of_major_axis = 26.52631578947368421052
    length_of_minor_axis = 11.56255298707631300170
    Minor axis : (0.6)x + (-0.8)y + (-12.73684210526315789474) = 0

Checking

edit

All interesting points have been calculated without using equations of any of the relevant lines.

However, equations of relevant lines are very useful for testing, for example:

  • Check that points   are on axis.
  • Check that points   are on latus rectum through  
  • Check that points   are on minor axis through  
  • Check that points   are on latus rectum through  


Test below checks that 8 points   are on ellipse and satisfy eccentricity  

t1 = (
    ('I1'), ('I2'),
    ('P'), ('Q'), ('R'),
    ('S'), ('T'), ('U'),
)

for name in t1 :
    value = eval(name)
    x,y = [ reduce_Decimal_number(v) for v in value ]
    print ('{} : ({}, {})'.format((name+' ')[:2], x,y))
    values = A*x**2, B*y**2, C*x*y, D*x, E*y, F
    sum_zero(values) and 3/0

    # Relative to Directrix 1 and Focus 1:
    distance_to_F1 = ( (x-p1)**2 + (y-q1)**2 ).sqrt()
    distance_to_directrix1 = a1*x + b1*y + c1
    e1 = distance_to_F1 / distance_to_directrix1
    print ('    e1 =',e1) # Raw value is printed.

    # Relative to Directrix 2 and Focus 2:
    distance_to_F2 = ( (x-p2)**2 + (y-q2)**2 ).sqrt()
    distance_to_directrix2 = a2*x + b2*y + c2
    e2 = distance_to_F2 / distance_to_directrix2
    e2 = reduce_Decimal_number(e2)
    print ('    e2 =',e2) # Clean value is printed.

Note the differences between "raw" values of   and "clean" values of  

I1 : (23.12, -15.16)
    e1 = -0.9000000000000000000034 
    e2 = 0.9
I2 : (7.204210526315789473684, 6.061052631578947368421)
    e1 = -0.9 
    e2 = 0.9
P  : (20.30821052631578947368, -15.61094736842105263158) 
    e1 = -0.9 
    e2 = 0.9
Q  : (10.53708406832736953616, -8.018239580333420216299)
    e1 = -0.9000000000000000000002
    e2 = 0.9
R  : (5.984, 3.488)
    e1 = -0.9000000000000000000003
    e2 = 0.9
S  : (10.016, 6.512) 
    e1 = -0.9000000000000000000003
    e2 = 0.9   
T  : (19.78712645798841993752, -1.080707788087632415281)
    e1 = -0.8999999999999999999996
    e2 = 0.9
U  : (24.34021052631578947368, -12.58694736842105263158)
    e1 = -0.9
    e2 = 0.9

Other resources

edit
  • Should the contents of this Wikiversity page be merged into the related Wikibooks modules such as b:Conic Sections/Ellipse?