History of Topics in Special Relativity/secsource

Secondary sources edit

  • Alizzi, A., Sen, A., & Silagadze, Z. K. (2022), "Do moving clocks slow down?", European Journal of Physics, 43 (6): 065601, arXiv:2209.12654, doi:10.1088/1361-6404/ac93ca{{citation}}: CS1 maint: multiple names: authors list (link)
  • Barrett, J.F. (2006), The hyperbolic theory of relativity, arXiv:1102.0462
  • Bôcher, M. (1907), "Quadratic forms", Introduction to higher algebra, New York: Macmillan
  • Bondi, H. (1964), Relativity and Common Sense, New York: Doubleday & Company
  • Brown, H. R. (2005), Physical relativity: space-time structure from a dynamical perspective, Oxford University Press, ISBN 9780199275830
  • Cartan, É.; Study, E. (1908), "Nombres complexes", Encyclopédie des Sciences Mathématiques Pures et Appliquées, 1.1: 328–468
  • Cartan, É.; Fano, G. (1955) [1915], "La théorie des groupes continus et la géométrie", Encyclopédie des Sciences Mathématiques Pures et Appliquées, 3.1: 39–43 (Only pages 1–21 were published in 1915, the entire article including pp. 39–43 concerning the groups of Laguerre and Lorentz was posthumously published in 1955 in Cartan's collected papers, and was reprinted in the Encyclopédie in 1991.)
  • Darrigol, O. (2000), Electrodynamics from Ampère to Einstein, Oxford: Oxford Univ. Press, ISBN 978-0-19-850594-5
  • Debs, T. A., & Redhead, M. L. (1996), "The twin paradox and the conventionality of simultaneity", American Journal of Physics, 64 (1): 384–392, doi:10.1119/1.18252{{citation}}: CS1 maint: multiple names: authors list (link)
  • During, É. (2014), "Langevin ou le paradoxe introuvable", Revue de métaphysique et de morale, 84: 513–527, doi:10.3917/rmm.144.0513
  • Hawkins, T. (2013), "The Cayley–Hermite problem and matrix algebra", The Mathematics of Frobenius in Context: A Journey Through 18th to 20th Century Mathematics, Springer, ISBN 978-1461463337
  • Kittel, C. (1974), "Larmor and the prehistory of the Lorentz transformations", American Journal of Physics, 42 (9): 726–729, doi:10.1119/1.1987825
  • von Laue, M. (1921), Die Relativitätstheorie, Band 1 (fourth edition of "Das Relativitätsprinzip" ed.), Vieweg; First edition 1911, second expanded edition 1913, third expanded edition 1919.
  • Majerník, V. (1986), "Representation of relativistic quantities by trigonometric functions", American Journal of Physics, 54 (6): 536–538, doi:10.1119/1.14557
  • Meyer, W.F. (1899), "Invariantentheorie", Encyclopädie der Mathematischen Wissenschaften, 1.1: 322–455
  • Miller, A. I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 978-0-201-04679-3
English translation: Pauli, W. (1981) [1958], "Theory of Relativity", Fundamental Theories of Physics, Dover Publications, 165, ISBN 978-0-486-64152-2
  • Pais, A. (1982), Subtle is the Lord: The Science and the Life of Albert Einstein, New York: Oxford University Press, ISBN 978-0-19-520438-4
  • Penrose, R.; Rindler W. (1984), Spinors and Space-Time: Volume 1, Two-Spinor Calculus and Relativistic Fields, Cambridge University Press, ISBN 978-0521337076
  • Ratcliffe, J. G. (1994), "Hyperbolic geometry", Foundations of Hyperbolic Manifolds, New York, pp. 56–104, ISBN 978-0387943480{{citation}}: CS1 maint: location missing publisher (link)
  • Rindler, W. (1970), "Einstein's priority in recognizing time dilation physically", American Journal of Physics, 38 (9): 1111–1115, doi:10.1119/1.1976561
  • Rindler, W. (2013) [1969], Essential Relativity: Special, General, and Cosmological, Springer, ISBN 978-1475711356
  • Robinson, E.A. (1990), Einstein's relativity in metaphor and mathematics, Prentice Hall, ISBN 9780132464970
  • Rosenfeld, B.A. (1988), A History of Non-Euclidean Geometry: Evolution of the Concept of a Geometric Space, New York: Springer, ISBN 978-1441986801
  • Schottenloher, M. (2008), A Mathematical Introduction to Conformal Field Theory, Springer, ISBN 978-3540706908
  • Synge, J. L. (1956), Relativity: The Special Theory, North Holland