w:Henri Poincaré (June 1905[ R 1] ; July 1905, published 1906[ R 2] ) showed that the four quantities related to charge density
ρ
{\displaystyle \rho }
are connected by a Lorentz transformation:
ρ
,
ρ
ξ
,
ρ
η
,
ρ
ζ
ρ
′
=
k
l
3
ρ
(
1
+
ϵ
ξ
)
,
ρ
′
ξ
′
=
k
l
3
ρ
(
ξ
+
ϵ
)
,
ρ
′
η
′
=
ρ
η
l
3
,
ρ
′
ζ
′
=
ρ
ζ
l
3
(
June
)
ρ
′
=
k
l
3
(
ρ
+
ϵ
ρ
ξ
)
,
ρ
′
ξ
′
=
k
l
3
(
ρ
ξ
+
ϵ
ρ
)
,
ρ
′
η
′
=
1
l
3
ρ
η
,
ρ
′
ζ
′
=
1
l
3
ρ
ζ
′
(
July
)
(
k
=
1
1
−
ϵ
2
,
l
=
1
)
{\displaystyle {\begin{matrix}\rho ,\ \rho \xi ,\ \rho \eta ,\ \rho \zeta \\\hline \rho ^{\prime }={\frac {k}{l^{3}}}\rho (1+\epsilon \xi ),\quad \rho ^{\prime }\xi ^{\prime }={\frac {k}{l^{3}}}\rho (\xi +\epsilon ),\quad \rho ^{\prime }\eta ^{\prime }={\frac {\rho \eta }{l^{3}}},\ \quad \rho ^{\prime }\zeta ^{\prime }={\frac {\rho \zeta }{l^{3}}}&({\text{June}})\\\rho ^{\prime }={\frac {k}{l^{3}}}(\rho +\epsilon \rho \xi ),\quad \rho '\xi ^{\prime }={\frac {k}{l^{3}}}(\rho \xi +\epsilon \rho ),\quad \rho ^{\prime }\eta ^{\prime }={\frac {1}{l^{3}}}\rho \eta ,\quad \rho ^{\prime }\zeta ^{\prime }={\frac {1}{l^{3}}}\rho \zeta '&({\text{July}})\\\left(k={\frac {1}{\sqrt {1-\epsilon ^{2}}}},\ l=1\right)\end{matrix}}}
and in his July paper he further stated the continuity equation and the invariance of Jacobian D :[ R 3]
d
ρ
′
d
t
′
+
∑
d
ρ
′
ξ
′
d
x
′
=
0
D
1
′
=
d
ρ
′
d
t
′
+
∑
d
ρ
′
ξ
′
d
x
′
=
0
,
D
1
=
d
ρ
d
t
+
∑
d
ρ
ξ
d
x
=
0
{\displaystyle {\begin{matrix}{\frac {d\rho ^{\prime }}{dt^{\prime }}}+\sum {\frac {d\rho ^{\prime }\xi ^{\prime }}{dx^{\prime }}}=0\\D_{1}^{'}={\frac {d\rho ^{\prime }}{dt^{\prime }}}+\sum {\frac {d\rho ^{\prime }\xi ^{\prime }}{dx^{\prime }}}=0,\ D_{1}={\frac {d\rho }{dt}}+\sum {\frac {d\rho \xi }{dx}}=0\end{matrix}}}
Even though Poincaré didn't directly use four-vector notation in those cases, his quantities are the components of four-current (a).
Following Poincaré, w:Roberto Marcolongo defined the general Lorentz transformation
α
,
β
,
γ
,
δ
{\displaystyle \alpha ,\beta ,\gamma ,\delta }
of the components of the four independent variables
V
,
ϱ
{\displaystyle \mathbf {V} ,\varrho }
and its continuity equation:[ R 4]
(
ξ
,
η
,
ζ
)
=
V
,
(
ξ
′
,
η
′
,
ζ
′
)
=
V
′
ϱ
′
ξ
′
=
ϱ
(
α
1
ξ
+
β
1
η
+
γ
1
ζ
−
i
δ
1
)
…
ϱ
′
=
ϱ
(
α
4
ξ
+
β
4
η
+
γ
4
ζ
−
i
δ
4
)
∂
ϱ
′
∂
t
′
+
∂
ϱ
′
ξ
′
∂
x
′
+
∂
ϱ
′
η
′
∂
y
′
+
∂
ϱ
′
ζ
′
∂
z
′
=
0
(
t
=
i
u
)
{\displaystyle {\begin{matrix}(\xi ,\eta ,\zeta )=\mathbf {V} ,\ (\xi ',\eta ',\zeta ')=\mathbf {V} '\\\hline \varrho '\xi '=\varrho \left(\alpha _{1}\xi +\beta _{1}\eta +\gamma _{1}\zeta -i\delta _{1}\right)\\\dots \\\varrho '=\varrho \left(\alpha _{4}\xi +\beta _{4}\eta +\gamma _{4}\zeta -i\delta _{4}\right)\\\hline {\frac {\partial \varrho '}{\partial t'}}+{\frac {\partial \varrho '\xi '}{\partial x'}}+{\frac {\partial \varrho '\eta '}{\partial y'}}+{\frac {\partial \varrho '\zeta '}{\partial z'}}=0\\(t=iu)\end{matrix}}}
equivalent to the components of four-current (a), and pointed out its relation to the components
J
,
φ
{\displaystyle \mathbf {J} ,\varphi }
of the four-potential
◻
J
x
′
=
−
4
π
ϱ
′
ξ
′
=
−
4
π
ϱ
(
α
1
ξ
+
β
1
η
+
γ
1
ζ
−
i
δ
1
)
,
…
◻
J
=
−
4
π
ϱ
V
,
◻
φ
=
−
4
π
ρ
,
◻
φ
′
=
−
4
π
ϱ
′
{\displaystyle {\begin{matrix}\Box \mathbf {J} '_{x}=-4\pi \varrho '\xi '=-4\pi \varrho \left(\alpha _{1}\xi +\beta _{1}\eta +\gamma _{1}\zeta -i\delta _{1}\right),\dots \\\Box \mathbf {J} =-4\pi \varrho \mathbf {V,\ \Box \varphi } =-4\pi \rho ,\ \Box \varphi '=-4\pi \varrho '\end{matrix}}}
equivalent to the components of Maxwell's equations (b).
w:Hermann Minkowski from the outset employed vector and matrix representation of four-vectors and six-vectors (i.e. antisymmetric second rank tensors) and their product. In a lecture held in November 1907, published 1915, Minkowski defined the four-current in vacuum with
ϱ
{\displaystyle \varrho }
as charge density and
v
{\displaystyle {\mathfrak {v}}}
as velocity:[ R 5]
(
ϱ
1
,
ϱ
2
,
ϱ
3
,
ϱ
4
)
=
(
ϱ
v
,
i
ϱ
)
{\displaystyle \left(\varrho _{1},\varrho _{2},\varrho _{3},\varrho _{4}\right)=(\varrho {\mathfrak {v}},\ i\varrho )}
equivalent to (a), and the electric four-current in matter with
i
{\displaystyle \mathbf {i} }
as current and
σ
{\displaystyle \sigma }
as charge density:[ R 6]
(
σ
)
=
(
σ
1
,
σ
2
,
σ
3
,
σ
4
)
=
(
i
x
,
i
y
,
i
z
,
i
σ
)
{\displaystyle (\sigma )=\left(\sigma _{1},\ \sigma _{2},\ \sigma _{3},\ \sigma _{4}\right)=(i_{x},i_{y},i_{z},\ i\sigma )}
In another lecture from December 1907, Minkowski defined the “space-time vector current” and its Lorentz transformation[ R 7]
(
ϱ
w
x
,
ϱ
w
y
,
ϱ
w
z
,
i
ϱ
)
⇒
(
ϱ
1
,
ϱ
2
,
ϱ
3
,
ϱ
4
)
ϱ
3
′
=
x
3
cos
i
ψ
+
ϱ
4
sin
i
ψ
,
ϱ
4
′
=
−
ϱ
3
sin
i
ψ
+
ϱ
4
cos
i
ψ
,
ϱ
1
′
=
ϱ
1
,
ϱ
2
′
=
ϱ
2
ϱ
′
w
z
′
′
=
ϱ
(
w
z
−
q
1
−
q
2
)
,
ϱ
′
=
ϱ
(
−
q
w
z
+
1
1
−
q
2
)
,
ϱ
′
w
x
′
′
=
ϱ
w
x
,
ϱ
′
w
y
′
′
=
ϱ
w
y
,
−
(
ϱ
1
2
+
ϱ
2
2
+
ϱ
3
2
+
ϱ
4
2
)
=
ϱ
2
(
1
−
w
x
2
−
w
y
2
−
w
z
2
)
=
ϱ
2
(
1
−
w
2
)
{\displaystyle {\begin{matrix}\left(\varrho \,{\mathfrak {w}}_{x},\ \varrho \,{\mathfrak {w}}_{y},\ \varrho \,{\mathfrak {w}}_{z},\ i\varrho \right)\Rightarrow \left(\varrho _{1},\ \varrho _{2},\ \varrho _{3},\ \varrho _{4}\right)\\\hline \varrho '_{3}=x_{3}\cos \ i\psi +\varrho _{4}\sin \ i\psi ,\quad \varrho '_{4}=-\varrho _{3}\sin \ i\psi +\varrho _{4}\cos \ i\psi ,\quad \varrho '_{1}=\varrho _{1},\quad \varrho '_{2}=\varrho _{2}\\\varrho '{\mathfrak {w}}'_{z'}=\varrho \left({\frac {{\mathfrak {w}}_{z}-q}{\sqrt {1-q^{2}}}}\right),\quad \varrho '=\varrho \left({\frac {-q\,{\mathfrak {w}}_{z}+1}{\sqrt {1-q^{2}}}}\right),\quad \varrho '{\mathfrak {w}}'_{x'}=\varrho \,{\mathfrak {w}}_{x},\quad \varrho '{\mathfrak {w}}'_{y'}=\varrho \,{\mathfrak {w}}_{y},\\\hline -(\varrho _{1}^{2}+\varrho _{2}^{2}+\varrho _{3}^{2}+\varrho _{4}^{2})=\varrho ^{2}(1-{\mathfrak {w}}_{x}^{2}-{\mathfrak {w}}_{y}^{2}-{\mathfrak {w}}_{z}^{2})=\varrho ^{2}(1-{\mathfrak {w}}^{2})\end{matrix}}}
equivalent to (a). In moving media and dielectrics, Minkowski more generally used the current density vector “electric current”
s
{\displaystyle {\mathfrak {s}}}
which becomes
s
=
σ
E
{\displaystyle {\mathfrak {s}}=\sigma {\mathfrak {E}}}
in isotropic media:[ R 8]
(
s
x
,
s
y
,
s
z
,
i
ϱ
)
⇒
(
s
1
,
s
2
,
s
3
,
s
4
)
{\displaystyle {\begin{matrix}\left({\mathfrak {s}}_{x},\ {\mathfrak {s}}_{y},\ {\mathfrak {s}}_{z},\ i\varrho \right)\Rightarrow \left(s_{1},\ s_{2},\ s_{3},\ s_{4}\right)\end{matrix}}}
Following Minkowski, w:Max Born (1909) defined the “space-time vector of first kind” (four-vector) and its continuity equation[ R 9]
(
ϱ
w
x
c
,
ϱ
w
y
c
,
ϱ
w
z
c
,
i
ϱ
)
⇒
(
ϱ
1
,
ϱ
2
,
ϱ
3
,
ϱ
4
)
∂
ϱ
w
x
∂
x
+
∂
ϱ
w
y
∂
y
+
∂
ϱ
w
z
∂
z
+
∂
ϱ
∂
t
=
0
{\displaystyle {\begin{matrix}\left({\frac {\varrho w_{x}}{c}},\ {\frac {\varrho w_{y}}{c}},\ {\frac {\varrho w_{z}}{c}},\ i\varrho \right)\Rightarrow \left(\varrho _{1},\ \varrho _{2},\ \varrho _{3},\ \varrho _{4}\right)\\{\frac {\partial \varrho w_{x}}{\partial x}}+{\frac {\partial \varrho w_{y}}{\partial y}}+{\frac {\partial \varrho w_{z}}{\partial z}}+{\frac {\partial \varrho }{\partial t}}=0\end{matrix}}}
equivalent to (a), and pointed out its relation to Maxwell's equations as the product of the D'Alembert operator with the electromagnetic potential
Φ
α
{\displaystyle \Phi _{\alpha }}
:
∂
∂
x
α
∑
β
=
1
4
∂
Φ
β
∂
x
β
−
∑
β
=
1
4
∂
2
Φ
α
∂
x
β
2
=
ϱ
α
(
∑
β
=
1
4
∂
Φ
β
∂
x
β
=
0
)
{\displaystyle {\frac {\partial }{\partial x_{\alpha }}}\sum _{\beta =1}^{4}{\frac {\partial \Phi _{\beta }}{\partial x_{\beta }}}-\sum _{\beta =1}^{4}{\frac {\partial ^{2}\Phi _{\alpha }}{\partial x_{\beta }^{2}}}=\varrho _{\alpha }\quad \left(\sum _{\beta =1}^{4}{\frac {\partial \Phi _{\beta }}{\partial x_{\beta }}}=0\right)}
equivalent to (c). He also expressed the four-current in terms of rest charge density and four-velocity
ϱ
1
=
ϱ
∗
c
⋅
∂
x
∂
τ
,
ϱ
2
=
ϱ
∗
c
⋅
∂
y
∂
τ
,
ϱ
3
=
ϱ
∗
c
⋅
∂
z
∂
τ
,
ϱ
4
=
i
ϱ
∗
∂
t
∂
τ
(
ϱ
∗
=
ϱ
1
−
w
2
c
2
=
−
(
ϱ
1
2
+
ϱ
2
2
+
ϱ
3
2
+
ϱ
4
2
)
,
d
τ
=
d
t
1
−
w
2
c
2
)
ϱ
α
=
i
ϱ
∗
∂
x
α
∂
ξ
4
(
ξ
4
=
i
c
τ
)
{\displaystyle {\begin{matrix}\varrho _{1}={\frac {\varrho ^{\ast }}{c}}\cdot {\frac {\partial x}{\partial \tau }},\ \varrho _{2}={\frac {\varrho ^{\ast }}{c}}\cdot {\frac {\partial y}{\partial \tau }},\ \varrho _{3}={\frac {\varrho ^{\ast }}{c}}\cdot {\frac {\partial z}{\partial \tau }},\ \varrho _{4}=i\varrho ^{\ast }{\frac {\partial t}{\partial \tau }}\\\left(\varrho ^{\ast }=\varrho {\sqrt {1-{\frac {w^{2}}{c^{2}}}}}={\sqrt {-\left(\varrho _{1}^{2}+\varrho _{2}^{2}+\varrho _{3}^{2}+\varrho _{4}^{2}\right)}},\ d\tau =dt{\sqrt {1-{\frac {w^{2}}{c^{2}}}}}\right)\\\varrho _{\alpha }=i\varrho ^{\ast }{\frac {\partial x_{\alpha }}{\partial \xi _{4}}}\quad \left(\xi _{4}=ic\tau \right)\end{matrix}}}
equivalent to (b).
A discussion of four-current in terms of integral forms (even though in the broader context of w:spherical wave transformations ), was given by w:Harry Bateman in a paper read 1909 and published 1910, who defined the Lorentz transformations of its components
(
ρ
w
x
,
ρ
w
y
,
ρ
w
z
,
ρ
)
{\displaystyle \left(\rho w_{x},\rho w_{y},\rho w_{z},\rho \right)}
[ R 10]
ρ
w
x
=
β
(
ρ
′
w
′
−
v
ρ
′
)
,
ρ
w
y
=
ρ
′
w
y
′
,
ρ
w
z
=
ρ
′
w
z
′
,
−
ρ
=
β
(
v
ρ
′
w
x
′
−
ρ
′
)
,
[
β
=
1
1
−
v
2
]
{\displaystyle \rho w_{x}=\beta (\rho 'w'-v\rho '),\ \rho w_{y}=\rho 'w'_{y},\ \rho w_{z}=\rho 'w'_{z},\ -\rho =\beta (v\rho 'w'_{x}-\rho '),\ \left[\beta ={\frac {1}{\sqrt {1-v^{2}}}}\right]}
forming the following invariant relations together with the differential four-position and four-potential:[ R 11]
1
λ
2
[
ρ
w
x
d
x
+
ρ
w
y
d
y
+
ρ
w
z
d
z
−
ρ
d
t
]
ρ
2
λ
2
(
1
−
w
2
)
d
x
d
y
d
z
d
t
ρ
[
A
x
w
x
+
A
y
w
y
+
A
z
w
z
−
Φ
]
d
x
d
y
d
z
d
t
{\displaystyle {\begin{matrix}{\frac {1}{\lambda ^{2}}}\left[\rho w_{x}dx+\rho w_{y}dy+\rho w_{z}dz-\rho dt\right]\\{\frac {\rho ^{2}}{\lambda ^{2}}}\left(1-w^{2}\right)dx\ dy\ dz\ dt\\\rho \left[A_{x}w_{x}+A_{y}w_{y}+A_{z}w_{z}-\Phi \right]dx\ dy\ dz\ dt\end{matrix}}}
with
λ
2
=
1
{\displaystyle \lambda ^{2}=1}
in relativity.
w:Wladimir Ignatowski (1910) defined the “vector of first kind” using charge density
ϱ
{\displaystyle \varrho }
and three-velocity
v
{\displaystyle {\mathfrak {v}}}
:[ R 12]
(
ϱ
v
,
ϱ
)
[
ϱ
1
−
n
v
2
=
ϱ
′
1
−
n
v
′
2
=
ϱ
0
]
{\displaystyle {\begin{matrix}\left(\varrho {\mathfrak {v}},\ \varrho \right)\\\hline \left[\varrho {\sqrt {1-n{\mathfrak {v}}^{2}}}=\varrho '{\sqrt {1-n{\mathfrak {v}}^{\prime 2}}}=\varrho _{0}\right]\end{matrix}}}
equivalent to four-current (a).
In influential papers on 4D vector calculus in relativity, w:Arnold Sommerfeld defined the four-current P , which he called four-density (Viererdichte):[ R 13]
P
x
=
ϱ
v
x
c
,
P
y
=
ϱ
v
y
c
,
P
z
=
ϱ
v
z
c
,
P
l
=
i
ϱ
β
2
=
1
c
2
(
v
x
2
+
v
y
2
+
v
z
2
)
⇒
|
P
|
=
i
ϱ
1
−
β
2
[
l
=
i
c
t
]
{\displaystyle {\begin{matrix}P_{x}=\varrho {\frac {{\mathfrak {v}}_{x}}{c}},\ P_{y}=\varrho {\frac {{\mathfrak {v}}_{y}}{c}},\ P_{z}=\varrho {\frac {{\mathfrak {v}}_{z}}{c}},\ P_{l}=i\varrho \\\hline \beta ^{2}={\frac {1}{c^{2}}}\left({\mathfrak {v}}_{x}^{2}+{\mathfrak {v}}_{y}^{2}+{\mathfrak {v}}_{z}^{2}\right)\quad \Rightarrow \quad \left|P\right|=i\varrho {\sqrt {1-\beta ^{2}}}\\{}[l=ict]\end{matrix}}}
equivalent to (a). In the second paper he pointed out its relation to four-potential
Φ
{\displaystyle \Phi }
and the electromagnetic tensor (six-vector) f together with the continuity condition:[ R 14]
P
=
D
i
v
R
o
t
Φ
=
D
i
v
f
−
P
=
◻
Φ
,
(
D
i
v
Φ
=
0
)
D
i
v
P
=
0
[
R
o
t
=
exterior product
D
i
v
=
divergence four-vector
D
i
v
=
divergence six-vector
◻
=
D'Alembert operator
]
{\displaystyle {\begin{matrix}{\begin{aligned}P&={\mathfrak {Div}}\mathrm {Rot} \ \Phi ={\mathfrak {Div}}\ f\\-P&=\square \Phi ,\ (\mathrm {Div} \ \Phi =0)\\\mathrm {Div} \ P&=0\end{aligned}}\\\left[{\begin{aligned}\mathrm {Rot} &={\text{exterior product}}\\\mathrm {Div} &={\text{divergence four-vector}}\\{\mathfrak {Div}}&={\text{divergence six-vector}}\\\square &={\text{D'Alembert operator}}\end{aligned}}\right]\end{matrix}}}
equivalent to Maxwell's equations (c). The scalar product with the four-potential[ R 15]
(
P
Φ
)
{\displaystyle (P\Phi )}
he called “electro-kinetic potential” whereas the vector product with the electromagnetic tensor[ R 16]
(
P
f
)
=
F
{\displaystyle (Pf)={\mathfrak {F}}}
he called the electrodynamic force (four-force density).
Lewis (1910), Wilson/Lewis (1912)
edit
w:Gilbert Newton Lewis (1910) devised an alternative 4D vector calculus based on w:Dyadics which, however, never gained widespread support. The four-current is a “1-vector”:[ R 17]
q
=
ϱ
c
v
+
i
ϱ
k
4
=
ϱ
c
v
1
k
1
+
ϱ
c
v
2
k
2
+
ϱ
c
v
3
k
3
+
i
ϱ
k
4
{\displaystyle {\begin{aligned}\mathbf {q} &={\frac {\varrho }{c}}\mathbf {v} +i\varrho \mathbf {k} _{4}\\&={\frac {\varrho }{c}}v_{1}\mathbf {k} _{1}+{\frac {\varrho }{c}}v_{2}\mathbf {k} _{2}+{\frac {\varrho }{c}}v_{3}\mathbf {k} _{3}+i\varrho \mathbf {k} _{4}\end{aligned}}}
equivalent to (a) and its relation to the four-potential
m
{\displaystyle \mathbf {m} }
and electromagnetic tensor
M
{\displaystyle \mathbf {M} }
:
◊
◊
×
m
=
q
◊
M
=
q
◊
2
m
=
−
q
(
∂
H
12
∂
x
2
+
∂
H
13
∂
x
3
+
∂
E
14
∂
x
4
)
k
1
=
ϱ
c
v
1
k
1
(
∂
H
21
∂
x
1
+
∂
H
23
∂
x
3
+
∂
E
24
∂
x
4
)
k
2
=
ϱ
c
v
2
k
2
(
∂
H
31
∂
x
1
+
∂
H
32
∂
x
2
+
∂
E
34
∂
x
4
)
k
3
=
ϱ
c
v
3
k
3
(
∂
H
41
∂
x
1
+
∂
H
42
∂
x
2
+
∂
E
43
∂
x
4
)
k
4
=
ϱ
c
i
k
4
[
◊
=
k
1
∂
∂
x
1
+
k
2
∂
∂
x
2
+
k
3
∂
∂
x
3
+
k
4
∂
∂
x
4
◊
2
=
∂
2
∂
x
1
+
∂
2
∂
x
2
+
∂
2
∂
x
3
+
∂
2
∂
x
4
]
{\displaystyle {\begin{matrix}{\begin{aligned}\lozenge \lozenge \times \mathbf {m} &=\mathbf {q} \\\lozenge \mathbf {M} &=\mathbf {q} \\\lozenge ^{2}\mathbf {m} &=-\mathbf {q} \end{aligned}}\\{\begin{aligned}\left({\frac {\partial H_{12}}{\partial x_{2}}}+{\frac {\partial H_{13}}{\partial x_{3}}}+{\frac {\partial E_{14}}{\partial x_{4}}}\right)\mathbf {k} _{1}&={\frac {\varrho }{c}}v_{1}\mathbf {k} _{1}\\\left({\frac {\partial H_{21}}{\partial x_{1}}}+{\frac {\partial H_{23}}{\partial x_{3}}}+{\frac {\partial E_{24}}{\partial x_{4}}}\right)\mathbf {k} _{2}&={\frac {\varrho }{c}}v_{2}\mathbf {k} _{2}\\\left({\frac {\partial H_{31}}{\partial x_{1}}}+{\frac {\partial H_{32}}{\partial x_{2}}}+{\frac {\partial E_{34}}{\partial x_{4}}}\right)\mathbf {k} _{3}&={\frac {\varrho }{c}}v_{3}\mathbf {k} _{3}\\\left({\frac {\partial H_{41}}{\partial x_{1}}}+{\frac {\partial H_{42}}{\partial x_{2}}}+{\frac {\partial E_{43}}{\partial x_{4}}}\right)\mathbf {k} _{4}&={\frac {\varrho }{c}}i\mathbf {k} _{4}\end{aligned}}\\\left[{\begin{matrix}\lozenge =\mathbf {k} _{1}{\frac {\partial }{\partial x_{1}}}+\mathbf {k} _{2}{\frac {\partial }{\partial x_{2}}}+\mathbf {k} _{3}{\frac {\partial }{\partial x_{3}}}+\mathbf {k} _{4}{\frac {\partial }{\partial x_{4}}}\\\lozenge ^{2}={\frac {\partial ^{2}}{\partial x_{1}}}+{\frac {\partial ^{2}}{\partial x_{2}}}+{\frac {\partial ^{2}}{\partial x_{3}}}+{\frac {\partial ^{2}}{\partial x_{4}}}\end{matrix}}\right]\end{matrix}}}
equivalent to (c,d).
In 1912, Lewis and w:Edwin Bidwell Wilson used only real coordinates, writing the above expressions as[ R 18]
◊
⋅
M
=
4
π
q
◊
2
m
=
−
4
π
q
[
◊
=
k
1
∂
∂
x
1
+
k
2
∂
∂
x
2
+
k
3
∂
∂
x
3
−
k
4
∂
∂
x
4
◊
2
=
∂
2
∂
x
1
+
∂
2
∂
x
2
+
∂
2
∂
x
3
−
∂
2
∂
x
4
]
{\displaystyle {\begin{matrix}{\begin{aligned}\lozenge \cdot \mathbf {M} &=4\pi \mathbf {q} \\\lozenge ^{2}\mathbf {m} &=-4\pi \mathbf {q} \end{aligned}}\\\left[{\begin{matrix}\lozenge =\mathbf {k} _{1}{\frac {\partial }{\partial x_{1}}}+\mathbf {k} _{2}{\frac {\partial }{\partial x_{2}}}+\mathbf {k} _{3}{\frac {\partial }{\partial x_{3}}}-\mathbf {k} _{4}{\frac {\partial }{\partial x_{4}}}\\\lozenge ^{2}={\frac {\partial ^{2}}{\partial x_{1}}}+{\frac {\partial ^{2}}{\partial x_{2}}}+{\frac {\partial ^{2}}{\partial x_{3}}}-{\frac {\partial ^{2}}{\partial x_{4}}}\end{matrix}}\right]\end{matrix}}}
equivalent to (c,d).
In the first textbook on relativity in 1911, w:Max von Laue elaborated on Sommerfeld's methods and explicitly used the term “four-current” (Viererstrom) of density
ϱ
{\displaystyle \varrho }
in relation to four-potential
Φ
{\displaystyle \Phi }
and electromagnetic tensor
M
{\displaystyle {\mathfrak {M}}}
:[ R 19]
P
⇒
(
P
x
=
ϱ
q
x
c
,
P
y
=
ϱ
q
y
c
,
P
z
=
ϱ
q
z
c
,
P
l
=
i
ϱ
)
P
=
Δ
i
v
(
M
)
−
P
=
◻
Φ
(
D
i
v
Φ
=
0
)
D
i
v
(
P
)
=
0
[
R
o
t
=
exterior product
D
i
v
=
divergence four-vector
Δ
i
v
=
divergence six-vector
◻
=
D'Alembert operator
]
{\displaystyle {\begin{matrix}P\Rightarrow \left(P_{x}={\frac {\varrho {\mathfrak {q}}_{x}}{c}},\ P_{y}={\frac {\varrho {\mathfrak {q}}_{y}}{c}},\ P_{z}={\frac {\varrho {\mathfrak {q}}_{z}}{c}},\ P_{l}=i\varrho \right)\\\hline {\begin{aligned}P&=\varDelta iv\ ({\mathfrak {M}})\\-P&=\square \Phi \ (Div\ \Phi =0)\\Div\ (P)&=0\end{aligned}}\\\left[{\begin{aligned}{\mathfrak {Rot}}&={\text{exterior product}}\\Div&={\text{divergence four-vector}}\\\varDelta iv&={\text{divergence six-vector}}\\\square &={\text{D'Alembert operator}}\end{aligned}}\right]\end{matrix}}}
equivalent to (a,c,d). He went on to define four-force density F as vector-product with
M
{\displaystyle {\mathfrak {M}}}
, four-convection K and four-conduction
Λ
{\displaystyle \Lambda }
using four-velocity Y :[ R 20]
F
=
[
P
M
]
,
(
P
F
)
=
(
P
[
P
M
]
)
=
0
K
=
−
(
Y
P
)
Y
Λ
=
P
+
(
Y
P
)
Y
{\displaystyle {\begin{matrix}F=[P{\mathfrak {M}}],\ (PF)=(P[P{\mathfrak {M}}])=0\\K=-(YP)Y\\\Lambda =P+(YP)Y\end{matrix}}}
,
w:Ludwik Silberstein devised an alternative 4D calculus based on w:Biquaternions which, however, never gained widespread support. He defined the “current-quaternion” (i.e. four-current) C and its relation to the “electromagnetic bivector” (i.e. field tensor)
F
{\displaystyle \mathbf {F} }
and “potential-quaternion” (i.e. four-potential)
Φ
{\displaystyle \Phi }
[ R 21]
C
=
ρ
(
ι
+
1
c
p
)
=
ι
ρ
d
q
d
l
C
=
D
F
=
−
◻
Φ
S
D
c
C
=
0
[
D
=
∂
∂
l
−
∇
,
D
D
c
=
◻
=
∂
2
∂
x
2
+
∂
2
∂
y
2
+
∂
2
∂
z
2
+
∂
2
∂
l
2
]
{\displaystyle {\begin{matrix}{\begin{aligned}\mathrm {C} &=\rho \left(\iota +{\frac {1}{c}}\mathbf {p} \right)\\&=\iota \rho {\frac {dq}{dl}}\\\mathrm {C} &=\mathrm {D} \mathbf {F} =-\Box \Phi \\\mathrm {S} \mathrm {D} _{c}\mathrm {C} &=0\end{aligned}}\\\left[\mathrm {D} ={\frac {\partial }{\partial l}}-\nabla ,\ \mathrm {D} \mathrm {D} _{c}=\Box ={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}+{\frac {\partial ^{2}}{\partial l^{2}}}\right]\end{matrix}}}
w:Friedrich Kottler defined the four-current
P
(
α
)
{\displaystyle \mathbf {P} ^{(\alpha )}}
and its relation to four-velocity
V
(
α
)
{\displaystyle V^{(\alpha )}}
, four-potential
Φ
α
{\displaystyle \Phi _{\alpha }}
, four-force
F
α
{\displaystyle F_{\alpha }}
, electromagnetic field-tensor
F
α
β
{\displaystyle F_{\alpha \beta }}
, stress-energy tensor
S
α
β
{\displaystyle S_{\alpha \beta }}
:[ R 22]
P
(
1
)
=
ρ
v
x
c
=
i
ρ
0
V
(
1
)
,
P
(
2
)
=
ρ
v
y
c
=
i
ρ
0
V
(
2
)
,
P
(
3
)
=
ρ
v
z
c
=
i
ρ
0
V
(
3
)
,
P
(
4
)
=
i
ρ
=
i
ρ
0
V
(
4
)
∑
h
=
1
4
∂
F
g
h
∂
x
(
h
)
=
P
(
g
)
,
◻
Φ
α
=
−
P
(
α
)
F
α
(
y
)
=
∑
β
F
α
β
(
y
)
P
(
β
)
(
y
)
1
−
w
2
/
c
2
[
∑
β
F
α
β
(
y
)
P
(
β
)
(
y
)
=
∑
β
F
α
β
(
y
)
∑
γ
∂
∂
y
(
γ
)
F
β
γ
(
y
)
=
∑
β
∂
∂
y
(
β
)
S
α
β
,
ρ
0
=
ρ
1
−
v
2
/
c
2
]
{\displaystyle {\begin{matrix}P^{(1)}=\rho {\frac {{\mathfrak {v}}_{x}}{c}}=i\rho _{0}V^{(1)},\ P^{(2)}=\rho {\frac {{\mathfrak {v}}_{y}}{c}}=i\rho _{0}V^{(2)},\ P^{(3)}=\rho {\frac {{\mathfrak {v}}_{z}}{c}}=i\rho _{0}V^{(3)},\ P^{(4)}=i\rho =i\rho _{0}V^{(4)}\\\hline \sum _{h=1}^{4}{\frac {\partial F_{gh}}{\partial x^{(h)}}}=\mathbf {P} ^{(g)},\ \Box \Phi _{\alpha }=-\mathbf {P} ^{(\alpha )}\\F_{\alpha }(y)=\sum _{\beta }{\frac {F_{\alpha \beta }(y)\mathbf {P} ^{(\beta )}(y)}{\sqrt {1-{\mathfrak {w}}^{2}/c^{2}}}}\\\left[{\underset {\beta }{\sum }}F_{\alpha \beta }(y)\mathbf {P} ^{(\beta )}(y)={\underset {\beta }{\sum }}F_{\alpha \beta }(y){\underset {\gamma }{\sum }}{\frac {\partial }{\partial y^{(\gamma )}}}F_{\beta \gamma }(y)={\underset {\beta }{\sum }}{\frac {\partial }{\partial y^{(\beta )}}}S_{\alpha \beta },\ \rho _{0}=\rho {\sqrt {1-{\mathfrak {v}}^{2}/c^{2}}}\right]\end{matrix}}}
equivalent to (a,b,c,d) and subsequently was the first to give the generally covariant formulation of Maxwell's equations using metric tensor
c
α
β
{\displaystyle c_{\alpha \beta }}
[ R 23]
∑
c
(
1
α
)
∑
β
,
γ
c
(
β
γ
)
Φ
α
/
β
γ
=
−
P
(
α
)
etc
.
[
∑
β
,
γ
c
(
β
γ
)
Φ
β
/
γ
=
0
]
{\displaystyle {\begin{matrix}\sum c^{(1\alpha )}\sum _{\beta ,\gamma }c^{(\beta \gamma )}\Phi _{\alpha /\beta \gamma }=-\mathbf {P} ^{(\alpha )}\ {\text{etc}}.\\\left[\sum _{\beta ,\gamma }c^{(\beta \gamma )}\Phi _{\beta /\gamma }=0\right]\end{matrix}}}
equivalent to (e).
Independently of Kottler (1912), w:Albert Einstein defined the general covariant four-current in the context of his Entwurf theory (a precursor of general relativity):[ R 24]
ϱ
0
d
x
ν
d
s
=
1
−
g
ϱ
0
d
x
ν
d
t
{\displaystyle \varrho _{0}{\frac {dx_{\nu }}{ds}}={\frac {1}{\sqrt {-g}}}\varrho _{0}{\frac {dx_{\nu }}{dt}}}
equivalent to (a), and the generally covariant formulation of Maxwell's equations
∑
ν
∂
∂
x
ν
(
−
g
⋅
φ
μ
ν
)
=
ϱ
0
d
x
μ
d
t
∂
H
x
∂
y
−
∂
H
y
∂
z
−
∂
E
x
∂
t
=
u
x
…
…
∂
E
x
∂
x
+
∂
E
y
∂
z
+
∂
E
x
∂
z
=
ϱ
[
ϱ
0
d
x
μ
d
t
=
u
μ
]
{\displaystyle {\begin{matrix}\sum _{\nu }{\frac {\partial }{\partial x_{\nu }}}\left({\sqrt {-g}}\cdot \varphi _{\mu \nu }\right)=\varrho _{0}{\frac {dx_{\mu }}{dt}}\\\hline {\begin{aligned}{\frac {\partial {\mathfrak {H}}_{x}}{\partial y}}-{\frac {\partial {\mathfrak {H}}_{y}}{\partial z}}-{\frac {\partial {\mathfrak {E}}_{x}}{\partial t}}&=u_{x}\\\dots \\\dots \\{\frac {\partial {\mathfrak {E}}_{x}}{\partial x}}+{\frac {\partial {\mathfrak {E}}_{y}}{\partial z}}+{\frac {\partial {\mathfrak {E}}_{x}}{\partial z}}&=\varrho \end{aligned}}\\\left[\varrho _{0}{\frac {dx_{\mu }}{dt}}=u_{\mu }\right]\end{matrix}}}
equivalent to (e) in the case of
g
μ
ν
{\displaystyle g_{\mu \nu }}
being the Minkowski tensor.