Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Geometry/Chapter 4/Lesson 8
Language
Watch
Edit
<
Geometry
|
Chapter 4
Contents
1
Introduction
2
Finding altitude in a right triangle
2.1
Solving for x
2.2
Solving for y
2.3
Solving for z
3
See also
Introduction
edit
This short page serves to teach the reader on how to find the altitude of a triangle.
Finding altitude in a right triangle
edit
How do we solve this question?
y
= Hypothenuse of
A
B
D
{\displaystyle ABD}
x
= Altitude
z
= Hypothenuse of
A
D
C
{\displaystyle ADC}
x
=
{\displaystyle x=}
x
4
=
{\displaystyle {\tfrac {x}{4}}=}
•
7
x
{\displaystyle {\tfrac {7}{x}}}
y
=
{\displaystyle y=}
y
4
=
{\displaystyle {\tfrac {y}{4}}=}
•
11
y
{\displaystyle {\tfrac {11}{y}}}
z
=
{\displaystyle z=}
z
7
=
{\displaystyle {\tfrac {z}{7}}=}
•
11
z
{\displaystyle {\tfrac {11}{z}}}
Solving for x
edit
x
=
{\displaystyle x=}
x
4
=
{\displaystyle {\tfrac {x}{4}}=}
•
7
x
{\displaystyle {\tfrac {7}{x}}}
√
x
{\displaystyle x}
2
=
{\displaystyle =}
√
28
{\displaystyle 28}
x
=
{\displaystyle x=}
2
{\displaystyle 2}
√
7
{\displaystyle 7}
Solving for y
edit
y
=
{\displaystyle y=}
y
4
=
{\displaystyle {\tfrac {y}{4}}=}
•
11
y
{\displaystyle {\tfrac {11}{y}}}
√
y
{\displaystyle y}
2
=
{\displaystyle =}
√
44
{\displaystyle 44}
y
=
2
{\displaystyle y=2}
√
11
{\displaystyle 11}
Solving for z
edit
z
=
{\displaystyle z=}
z
7
=
{\displaystyle {\tfrac {z}{7}}=}
•
11
z
{\displaystyle {\tfrac {11}{z}}}
√
z
{\displaystyle z}
2
=
{\displaystyle =}
√
77
{\displaystyle 77}
z
=
{\displaystyle z=}
√
77
{\displaystyle 77}
Answer
:
x
=
{\displaystyle x=}
2
{\displaystyle 2}
√
7
{\displaystyle 7}
y
=
2
{\displaystyle y=2}
√
11
{\displaystyle 11}
z
=
{\displaystyle z=}
√
77
{\displaystyle 77}
See also
edit
https://www.youtube.com/watch?v=ZEsHoh3cI5s