Geochronology/Helium dating

Apatites

edit

Helium dating or (U-Th)/He dating of apatite is also well established from noble gas diffusion studies[1][2][3][4][5][6][7] for use in determining thermal histories,[8][9] and other, less typical applications such as paleo-wildfire dating.[10]

References

edit
  1. Zeitler, P.K.; Herczeg, A.L.; McDougall, I.; Honda, M. (October 1987). "U-Th-He dating of apatite: A potential thermochronometer". Geochimica et Cosmochimica Acta 51 (10): 2865–2868. doi:10.1016/0016-7037(87)90164-5. ISSN 0016-7037. 
  2. Wolf, R.A.; Farley, K.A.; Silver, L.T. (November 1996). "Helium diffusion and low-temperature thermochronometry of apatite". Geochimica et Cosmochimica Acta 60 (21): 4231–4240. doi:10.1016/s0016-7037(96)00192-5. ISSN 0016-7037. 
  3. Warnock, A.C.; Zeitler, P.K.; Wolf, R.A.; Bergman, S.C. (December 1997). "An evaluation of low-temperature apatite U Th/He thermochronometry". Geochimica et Cosmochimica Acta 61 (24): 5371–5377. doi:10.1016/s0016-7037(97)00302-5. ISSN 0016-7037. 
  4. Farley, K. A. (2000-02-10). "Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite". Journal of Geophysical Research: Solid Earth 105 (B2): 2903–2914. doi:10.1029/1999jb900348. ISSN 0148-0227. https://authors.library.caltech.edu/37451/1/1999JB900348.pdf. 
  5. Shuster, David L.; Flowers, Rebecca M.; Farley, Kenneth A. (September 2006). "The influence of natural radiation damage on helium diffusion kinetics in apatite". Earth and Planetary Science Letters 249 (3–4): 148–161. doi:10.1016/j.epsl.2006.07.028. ISSN 0012-821X. 
  6. Idleman, Bruce D.; Zeitler, Peter K.; McDannell, Kalin T. (January 2018). "Characterization of helium release from apatite by continuous ramped heating". Chemical Geology 476: 223–232. doi:10.1016/j.chemgeo.2017.11.019. ISSN 0009-2541. 
  7. McDannell, Kalin T.; Zeitler, Peter K.; Janes, Darwin G.; Idleman, Bruce D.; Fayon, Annia K. (February 2018). "Screening apatites for (U-Th)/He thermochronometry via continuous ramped heating: He age components and implications for age dispersion". Geochimica et Cosmochimica Acta 223: 90–106. doi:10.1016/j.gca.2017.11.031. ISSN 0016-7037. 
  8. House, M.A.; Wernicke, B.P.; Farley, K.A.; Dumitru, T.A. (October 1997). "Cenozoic thermal evolution of the central Sierra Nevada, California, from (UTh)/He thermochronometry". Earth and Planetary Science Letters 151 (3–4): 167–179. doi:10.1016/s0012-821x(97)81846-8. ISSN 0012-821X. 
  9. Ehlers, Todd A.; Farley, Kenneth A. (January 2003). "Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes". Earth and Planetary Science Letters 206 (1–2): 1–14. doi:10.1016/s0012-821x(02)01069-5. ISSN 0012-821X. 
  10. Reiners, P. W.; Thomson, S. N.; McPhillips, D.; Donelick, R. A.; Roering, J. J. (2007-10-12). "Wildfire thermochronology and the fate and transport of apatite in hillslope and fluvial environments". Journal of Geophysical Research 112 (F4): F04001. doi:10.1029/2007jf000759. ISSN 0148-0227.