File:Nimber products of powers of two; tensor.png

Original file (2,048 × 2,048 pixels, file size: 280 KB, MIME type: image/png)

This is a file from the Wikimedia Commons. The description on its description page there is shown below.

Commons is a freely licensed media file repository. You can help.

Summary

Description

Binary tensor showing the same information like File:Nimber products of powers of two.svg


Vertical and horizontal axes are like in the matrix, the binary numbers are shown in the depth, with the nearer places for the lower exponents.

 
This image was created with POV-Ray.
Date
Source Own work
Author
Watchduck
You can name the author as "T. Piesk", "Tilman Piesk" or "Watchduck".


POV-Ray source

#include "colors.inc"    

background {color White}                                                      
 
camera { angle 8
        location <65,45,-150>
        look_at  <7.6, 7.5, 8>  
        up    < 0, 1, 0>
        right   < 1, 0, 0>
       }
              
union
{     
        light_source { <50,30,20>
                       color White
                       shadowless
                     }    
         
         
        light_source { <-1,20,-2>
                       color Gray
                       shadowless
                     }      
                     
        light_source { <-40,-70,-20>
                       color White
                       shadowless
                     } 
translate<10,10,10>                 
}  
                      
// black cube 
difference{
           box {
                < -0.1,-0.1,-0.1>, 
                < 16.1,16.1,16.1>  
                pigment{color Black} 
               }
 
           union{
                 box{
                     < -8,-8,-8>, 
                     < 8,8,8>  
                     pigment{color Black}  
                     scale <1.02,0.995,0.995>
                    } 
                 box{
                     < -8,-8,-8>, 
                     < 8,8,8>  
                     pigment{color Black}  
                     scale <0.995,1.02,0.995>
                    }                     
                 box{
                     < -8,-8,-8>, 
                     < 8,8,8>  
                     pigment{color Black}  
                     scale <0.995,0.995,1.02>
                    } 
                 translate<8,8,8>                 
                }  
             no_reflection 
            }             
     
// red box                 
#declare a = box{ <0.98,15.98,0.98>, <0.02,15.02,0.02> pigment{color Red} };    
        
// puts red boxes        
#macro f(m,n,d)
        object{a translate<n,-m,d>}   
#end

 f(0,0,0)
 f(0,1,1)
 f(0,2,2)
 f(0,3,3)
 f(0,4,4)
 f(0,5,5)
 f(0,6,6)
 f(0,7,7)
 f(0,8,8)
 f(0,9,9)
 f(0,10,10)
 f(0,11,11)
 f(0,12,12)
 f(0,13,13)
 f(0,14,14)
 f(0,15,15)

 f(1,0,1)
 f(1,1,0) f(1,1,1)
 f(1,2,3)
 f(1,3,2) f(1,3,3)
 f(1,4,5)
 f(1,5,4) f(1,5,5)
 f(1,6,7)
 f(1,7,6) f(1,7,7)
 f(1,8,9)
 f(1,9,8) f(1,9,9)
 f(1,10,11)
 f(1,11,10) f(1,11,11)
 f(1,12,13)
 f(1,13,12) f(1,13,13)
 f(1,14,15)
 f(1,15,14) f(1,15,15)

 f(2,0,2)
 f(2,1,3)
 f(2,2,1) f(2,2,2)
 f(2,3,0) f(2,3,1) f(2,3,3)
 f(2,4,6)
 f(2,5,7)
 f(2,6,5) f(2,6,6)
 f(2,7,4) f(2,7,5) f(2,7,7)
 f(2,8,10)
 f(2,9,11)
 f(2,10,9) f(2,10,10)
 f(2,11,8) f(2,11,9) f(2,11,11)
 f(2,12,14)
 f(2,13,15)
 f(2,14,13) f(2,14,14)
 f(2,15,12) f(2,15,13) f(2,15,15)

 f(3,0,3)
 f(3,1,2) f(3,1,3)
 f(3,2,0) f(3,2,1) f(3,2,3)
 f(3,3,0) f(3,3,2) f(3,3,3)
 f(3,4,7)
 f(3,5,6) f(3,5,7)
 f(3,6,4) f(3,6,5) f(3,6,7)
 f(3,7,4) f(3,7,6) f(3,7,7)
 f(3,8,11)
 f(3,9,10) f(3,9,11)
 f(3,10,8) f(3,10,9) f(3,10,11)
 f(3,11,8) f(3,11,10) f(3,11,11)
 f(3,12,15)
 f(3,13,14) f(3,13,15)
 f(3,14,12) f(3,14,13) f(3,14,15)
 f(3,15,12) f(3,15,14) f(3,15,15)

 f(4,0,4)
 f(4,1,5)
 f(4,2,6)
 f(4,3,7)
 f(4,4,3) f(4,4,4)
 f(4,5,2) f(4,5,3) f(4,5,5)
 f(4,6,0) f(4,6,1) f(4,6,3) f(4,6,6)
 f(4,7,0) f(4,7,2) f(4,7,3) f(4,7,7)
 f(4,8,12)
 f(4,9,13)
 f(4,10,14)
 f(4,11,15)
 f(4,12,11) f(4,12,12)
 f(4,13,10) f(4,13,11) f(4,13,13)
 f(4,14,8) f(4,14,9) f(4,14,11) f(4,14,14)
 f(4,15,8) f(4,15,10) f(4,15,11) f(4,15,15)

 f(5,0,5)
 f(5,1,4) f(5,1,5)
 f(5,2,7)
 f(5,3,6) f(5,3,7)
 f(5,4,2) f(5,4,3) f(5,4,5)
 f(5,5,2) f(5,5,4) f(5,5,5)
 f(5,6,0) f(5,6,2) f(5,6,3) f(5,6,7)
 f(5,7,1) f(5,7,2) f(5,7,6) f(5,7,7)
 f(5,8,13)
 f(5,9,12) f(5,9,13)
 f(5,10,15)
 f(5,11,14) f(5,11,15)
 f(5,12,10) f(5,12,11) f(5,12,13)
 f(5,13,10) f(5,13,12) f(5,13,13)
 f(5,14,8) f(5,14,10) f(5,14,11) f(5,14,15)
 f(5,15,9) f(5,15,10) f(5,15,14) f(5,15,15)

 f(6,0,6)
 f(6,1,7)
 f(6,2,5) f(6,2,6)
 f(6,3,4) f(6,3,5) f(6,3,7)
 f(6,4,0) f(6,4,1) f(6,4,3) f(6,4,6)
 f(6,5,0) f(6,5,2) f(6,5,3) f(6,5,7)
 f(6,6,0) f(6,6,1) f(6,6,2) f(6,6,5) f(6,6,6)
 f(6,7,0) f(6,7,3) f(6,7,4) f(6,7,5) f(6,7,7)
 f(6,8,14)
 f(6,9,15)
 f(6,10,13) f(6,10,14)
 f(6,11,12) f(6,11,13) f(6,11,15)
 f(6,12,8) f(6,12,9) f(6,12,11) f(6,12,14)
 f(6,13,8) f(6,13,10) f(6,13,11) f(6,13,15)
 f(6,14,8) f(6,14,9) f(6,14,10) f(6,14,13) f(6,14,14)
 f(6,15,8) f(6,15,11) f(6,15,12) f(6,15,13) f(6,15,15)

 f(7,0,7)
 f(7,1,6) f(7,1,7)
 f(7,2,4) f(7,2,5) f(7,2,7)
 f(7,3,4) f(7,3,6) f(7,3,7)
 f(7,4,0) f(7,4,2) f(7,4,3) f(7,4,7)
 f(7,5,1) f(7,5,2) f(7,5,6) f(7,5,7)
 f(7,6,0) f(7,6,3) f(7,6,4) f(7,6,5) f(7,6,7)
 f(7,7,1) f(7,7,2) f(7,7,3) f(7,7,4) f(7,7,6) f(7,7,7)
 f(7,8,15)
 f(7,9,14) f(7,9,15)
 f(7,10,12) f(7,10,13) f(7,10,15)
 f(7,11,12) f(7,11,14) f(7,11,15)
 f(7,12,8) f(7,12,10) f(7,12,11) f(7,12,15)
 f(7,13,9) f(7,13,10) f(7,13,14) f(7,13,15)
 f(7,14,8) f(7,14,11) f(7,14,12) f(7,14,13) f(7,14,15)
 f(7,15,9) f(7,15,10) f(7,15,11) f(7,15,12) f(7,15,14) f(7,15,15)

 f(8,0,8)
 f(8,1,9)
 f(8,2,10)
 f(8,3,11)
 f(8,4,12)
 f(8,5,13)
 f(8,6,14)
 f(8,7,15)
 f(8,8,7) f(8,8,8)
 f(8,9,6) f(8,9,7) f(8,9,9)
 f(8,10,4) f(8,10,5) f(8,10,7) f(8,10,10)
 f(8,11,4) f(8,11,6) f(8,11,7) f(8,11,11)
 f(8,12,0) f(8,12,2) f(8,12,3) f(8,12,7) f(8,12,12)
 f(8,13,1) f(8,13,2) f(8,13,6) f(8,13,7) f(8,13,13)
 f(8,14,0) f(8,14,3) f(8,14,4) f(8,14,5) f(8,14,7) f(8,14,14)
 f(8,15,1) f(8,15,2) f(8,15,3) f(8,15,4) f(8,15,6) f(8,15,7) f(8,15,15)

 f(9,0,9)
 f(9,1,8) f(9,1,9)
 f(9,2,11)
 f(9,3,10) f(9,3,11)
 f(9,4,13)
 f(9,5,12) f(9,5,13)
 f(9,6,15)
 f(9,7,14) f(9,7,15)
 f(9,8,6) f(9,8,7) f(9,8,9)
 f(9,9,6) f(9,9,8) f(9,9,9)
 f(9,10,4) f(9,10,6) f(9,10,7) f(9,10,11)
 f(9,11,5) f(9,11,6) f(9,11,10) f(9,11,11)
 f(9,12,1) f(9,12,2) f(9,12,6) f(9,12,7) f(9,12,13)
 f(9,13,0) f(9,13,1) f(9,13,3) f(9,13,6) f(9,13,12) f(9,13,13)
 f(9,14,1) f(9,14,2) f(9,14,3) f(9,14,4) f(9,14,6) f(9,14,7) f(9,14,15)
 f(9,15,0) f(9,15,1) f(9,15,2) f(9,15,5) f(9,15,6) f(9,15,14) f(9,15,15)

 f(10,0,10)
 f(10,1,11)
 f(10,2,9) f(10,2,10)
 f(10,3,8) f(10,3,9) f(10,3,11)
 f(10,4,14)
 f(10,5,15)
 f(10,6,13) f(10,6,14)
 f(10,7,12) f(10,7,13) f(10,7,15)
 f(10,8,4) f(10,8,5) f(10,8,7) f(10,8,10)
 f(10,9,4) f(10,9,6) f(10,9,7) f(10,9,11)
 f(10,10,4) f(10,10,5) f(10,10,6) f(10,10,9) f(10,10,10)
 f(10,11,4) f(10,11,7) f(10,11,8) f(10,11,9) f(10,11,11)
 f(10,12,0) f(10,12,3) f(10,12,4) f(10,12,5) f(10,12,7) f(10,12,14)
 f(10,13,1) f(10,13,2) f(10,13,3) f(10,13,4) f(10,13,6) f(10,13,7) f(10,13,15)
 f(10,14,0) f(10,14,1) f(10,14,2) f(10,14,3) f(10,14,4) f(10,14,5) f(10,14,6) f(10,14,13) f(10,14,14)
 f(10,15,0) f(10,15,2) f(10,15,4) f(10,15,7) f(10,15,12) f(10,15,13) f(10,15,15)

 f(11,0,11)
 f(11,1,10) f(11,1,11)
 f(11,2,8) f(11,2,9) f(11,2,11)
 f(11,3,8) f(11,3,10) f(11,3,11)
 f(11,4,15)
 f(11,5,14) f(11,5,15)
 f(11,6,12) f(11,6,13) f(11,6,15)
 f(11,7,12) f(11,7,14) f(11,7,15)
 f(11,8,4) f(11,8,6) f(11,8,7) f(11,8,11)
 f(11,9,5) f(11,9,6) f(11,9,10) f(11,9,11)
 f(11,10,4) f(11,10,7) f(11,10,8) f(11,10,9) f(11,10,11)
 f(11,11,5) f(11,11,6) f(11,11,7) f(11,11,8) f(11,11,10) f(11,11,11)
 f(11,12,1) f(11,12,2) f(11,12,3) f(11,12,4) f(11,12,6) f(11,12,7) f(11,12,15)
 f(11,13,0) f(11,13,1) f(11,13,2) f(11,13,5) f(11,13,6) f(11,13,14) f(11,13,15)
 f(11,14,0) f(11,14,2) f(11,14,4) f(11,14,7) f(11,14,12) f(11,14,13) f(11,14,15)
 f(11,15,1) f(11,15,3) f(11,15,5) f(11,15,6) f(11,15,7) f(11,15,12) f(11,15,14) f(11,15,15)

 f(12,0,12)
 f(12,1,13)
 f(12,2,14)
 f(12,3,15)
 f(12,4,11) f(12,4,12)
 f(12,5,10) f(12,5,11) f(12,5,13)
 f(12,6,8) f(12,6,9) f(12,6,11) f(12,6,14)
 f(12,7,8) f(12,7,10) f(12,7,11) f(12,7,15)
 f(12,8,0) f(12,8,2) f(12,8,3) f(12,8,7) f(12,8,12)
 f(12,9,1) f(12,9,2) f(12,9,6) f(12,9,7) f(12,9,13)
 f(12,10,0) f(12,10,3) f(12,10,4) f(12,10,5) f(12,10,7) f(12,10,14)
 f(12,11,1) f(12,11,2) f(12,11,3) f(12,11,4) f(12,11,6) f(12,11,7) f(12,11,15)
 f(12,12,0) f(12,12,2) f(12,12,3) f(12,12,4) f(12,12,6) f(12,12,11) f(12,12,12)
 f(12,13,1) f(12,13,2) f(12,13,5) f(12,13,7) f(12,13,10) f(12,13,11) f(12,13,13)
 f(12,14,0) f(12,14,3) f(12,14,5) f(12,14,8) f(12,14,9) f(12,14,11) f(12,14,14)
 f(12,15,1) f(12,15,2) f(12,15,3) f(12,15,4) f(12,15,5) f(12,15,8) f(12,15,10) f(12,15,11) f(12,15,15)

 f(13,0,13)
 f(13,1,12) f(13,1,13)
 f(13,2,15)
 f(13,3,14) f(13,3,15)
 f(13,4,10) f(13,4,11) f(13,4,13)
 f(13,5,10) f(13,5,12) f(13,5,13)
 f(13,6,8) f(13,6,10) f(13,6,11) f(13,6,15)
 f(13,7,9) f(13,7,10) f(13,7,14) f(13,7,15)
 f(13,8,1) f(13,8,2) f(13,8,6) f(13,8,7) f(13,8,13)
 f(13,9,0) f(13,9,1) f(13,9,3) f(13,9,6) f(13,9,12) f(13,9,13)
 f(13,10,1) f(13,10,2) f(13,10,3) f(13,10,4) f(13,10,6) f(13,10,7) f(13,10,15)
 f(13,11,0) f(13,11,1) f(13,11,2) f(13,11,5) f(13,11,6) f(13,11,14) f(13,11,15)
 f(13,12,1) f(13,12,2) f(13,12,5) f(13,12,7) f(13,12,10) f(13,12,11) f(13,12,13)
 f(13,13,0) f(13,13,1) f(13,13,3) f(13,13,4) f(13,13,5) f(13,13,6) f(13,13,7) f(13,13,10) f(13,13,12) f(13,13,13)
 f(13,14,1) f(13,14,2) f(13,14,3) f(13,14,4) f(13,14,5) f(13,14,8) f(13,14,10) f(13,14,11) f(13,14,15)
 f(13,15,0) f(13,15,1) f(13,15,2) f(13,15,4) f(13,15,9) f(13,15,10) f(13,15,14) f(13,15,15)

 f(14,0,14)
 f(14,1,15)
 f(14,2,13) f(14,2,14)
 f(14,3,12) f(14,3,13) f(14,3,15)
 f(14,4,8) f(14,4,9) f(14,4,11) f(14,4,14)
 f(14,5,8) f(14,5,10) f(14,5,11) f(14,5,15)
 f(14,6,8) f(14,6,9) f(14,6,10) f(14,6,13) f(14,6,14)
 f(14,7,8) f(14,7,11) f(14,7,12) f(14,7,13) f(14,7,15)
 f(14,8,0) f(14,8,3) f(14,8,4) f(14,8,5) f(14,8,7) f(14,8,14)
 f(14,9,1) f(14,9,2) f(14,9,3) f(14,9,4) f(14,9,6) f(14,9,7) f(14,9,15)
 f(14,10,0) f(14,10,1) f(14,10,2) f(14,10,3) f(14,10,4) f(14,10,5) f(14,10,6) f(14,10,13) f(14,10,14)
 f(14,11,0) f(14,11,2) f(14,11,4) f(14,11,7) f(14,11,12) f(14,11,13) f(14,11,15)
 f(14,12,0) f(14,12,3) f(14,12,5) f(14,12,8) f(14,12,9) f(14,12,11) f(14,12,14)
 f(14,13,1) f(14,13,2) f(14,13,3) f(14,13,4) f(14,13,5) f(14,13,8) f(14,13,10) f(14,13,11) f(14,13,15)
 f(14,14,0) f(14,14,1) f(14,14,2) f(14,14,3) f(14,14,7) f(14,14,8) f(14,14,9) f(14,14,10) f(14,14,13) f(14,14,14)
 f(14,15,0) f(14,15,2) f(14,15,6) f(14,15,7) f(14,15,8) f(14,15,11) f(14,15,12) f(14,15,13) f(14,15,15)

 f(15,0,15)
 f(15,1,14) f(15,1,15)
 f(15,2,12) f(15,2,13) f(15,2,15)
 f(15,3,12) f(15,3,14) f(15,3,15)
 f(15,4,8) f(15,4,10) f(15,4,11) f(15,4,15)
 f(15,5,9) f(15,5,10) f(15,5,14) f(15,5,15)
 f(15,6,8) f(15,6,11) f(15,6,12) f(15,6,13) f(15,6,15)
 f(15,7,9) f(15,7,10) f(15,7,11) f(15,7,12) f(15,7,14) f(15,7,15)
 f(15,8,1) f(15,8,2) f(15,8,3) f(15,8,4) f(15,8,6) f(15,8,7) f(15,8,15)
 f(15,9,0) f(15,9,1) f(15,9,2) f(15,9,5) f(15,9,6) f(15,9,14) f(15,9,15)
 f(15,10,0) f(15,10,2) f(15,10,4) f(15,10,7) f(15,10,12) f(15,10,13) f(15,10,15)
 f(15,11,1) f(15,11,3) f(15,11,5) f(15,11,6) f(15,11,7) f(15,11,12) f(15,11,14) f(15,11,15)
 f(15,12,1) f(15,12,2) f(15,12,3) f(15,12,4) f(15,12,5) f(15,12,8) f(15,12,10) f(15,12,11) f(15,12,15)
 f(15,13,0) f(15,13,1) f(15,13,2) f(15,13,4) f(15,13,9) f(15,13,10) f(15,13,14) f(15,13,15)
 f(15,14,0) f(15,14,2) f(15,14,6) f(15,14,7) f(15,14,8) f(15,14,11) f(15,14,12) f(15,14,13) f(15,14,15)
 f(15,15,1) f(15,15,3) f(15,15,6) f(15,15,9) f(15,15,10) f(15,15,11) f(15,15,12) f(15,15,14) f(15,15,15)  

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:31, 30 March 2013Thumbnail for version as of 19:31, 30 March 20132,048 × 2,048 (280 KB)Watchduck{{Information |Description ={{en|1=Binary tensor showing the same information like 200px Vertical and horizontal axes are like in the matrix, the binary numbers are shown in the depth, with the nearer p...

The following page uses this file: