File:Nimber products of powers of two; tensor.png
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels.
Original file (2,048 × 2,048 pixels, file size: 280 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. The description on its description page there is shown below.
Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionNimber products of powers of two; tensor.png |
Binary tensor showing the same information like File:Nimber products of powers of two.svg
This image was created with POV-Ray. |
||
Date | |||
Source | Own work | ||
Author |
|
POV-Ray source
#include "colors.inc" background {color White} camera { angle 8 location <65,45,-150> look_at <7.6, 7.5, 8> up < 0, 1, 0> right < 1, 0, 0> } union { light_source { <50,30,20> color White shadowless } light_source { <-1,20,-2> color Gray shadowless } light_source { <-40,-70,-20> color White shadowless } translate<10,10,10> } // black cube difference{ box { < -0.1,-0.1,-0.1>, < 16.1,16.1,16.1> pigment{color Black} } union{ box{ < -8,-8,-8>, < 8,8,8> pigment{color Black} scale <1.02,0.995,0.995> } box{ < -8,-8,-8>, < 8,8,8> pigment{color Black} scale <0.995,1.02,0.995> } box{ < -8,-8,-8>, < 8,8,8> pigment{color Black} scale <0.995,0.995,1.02> } translate<8,8,8> } no_reflection } // red box #declare a = box{ <0.98,15.98,0.98>, <0.02,15.02,0.02> pigment{color Red} }; // puts red boxes #macro f(m,n,d) object{a translate<n,-m,d>} #end f(0,0,0) f(0,1,1) f(0,2,2) f(0,3,3) f(0,4,4) f(0,5,5) f(0,6,6) f(0,7,7) f(0,8,8) f(0,9,9) f(0,10,10) f(0,11,11) f(0,12,12) f(0,13,13) f(0,14,14) f(0,15,15) f(1,0,1) f(1,1,0) f(1,1,1) f(1,2,3) f(1,3,2) f(1,3,3) f(1,4,5) f(1,5,4) f(1,5,5) f(1,6,7) f(1,7,6) f(1,7,7) f(1,8,9) f(1,9,8) f(1,9,9) f(1,10,11) f(1,11,10) f(1,11,11) f(1,12,13) f(1,13,12) f(1,13,13) f(1,14,15) f(1,15,14) f(1,15,15) f(2,0,2) f(2,1,3) f(2,2,1) f(2,2,2) f(2,3,0) f(2,3,1) f(2,3,3) f(2,4,6) f(2,5,7) f(2,6,5) f(2,6,6) f(2,7,4) f(2,7,5) f(2,7,7) f(2,8,10) f(2,9,11) f(2,10,9) f(2,10,10) f(2,11,8) f(2,11,9) f(2,11,11) f(2,12,14) f(2,13,15) f(2,14,13) f(2,14,14) f(2,15,12) f(2,15,13) f(2,15,15) f(3,0,3) f(3,1,2) f(3,1,3) f(3,2,0) f(3,2,1) f(3,2,3) f(3,3,0) f(3,3,2) f(3,3,3) f(3,4,7) f(3,5,6) f(3,5,7) f(3,6,4) f(3,6,5) f(3,6,7) f(3,7,4) f(3,7,6) f(3,7,7) f(3,8,11) f(3,9,10) f(3,9,11) f(3,10,8) f(3,10,9) f(3,10,11) f(3,11,8) f(3,11,10) f(3,11,11) f(3,12,15) f(3,13,14) f(3,13,15) f(3,14,12) f(3,14,13) f(3,14,15) f(3,15,12) f(3,15,14) f(3,15,15) f(4,0,4) f(4,1,5) f(4,2,6) f(4,3,7) f(4,4,3) f(4,4,4) f(4,5,2) f(4,5,3) f(4,5,5) f(4,6,0) f(4,6,1) f(4,6,3) f(4,6,6) f(4,7,0) f(4,7,2) f(4,7,3) f(4,7,7) f(4,8,12) f(4,9,13) f(4,10,14) f(4,11,15) f(4,12,11) f(4,12,12) f(4,13,10) f(4,13,11) f(4,13,13) f(4,14,8) f(4,14,9) f(4,14,11) f(4,14,14) f(4,15,8) f(4,15,10) f(4,15,11) f(4,15,15) f(5,0,5) f(5,1,4) f(5,1,5) f(5,2,7) f(5,3,6) f(5,3,7) f(5,4,2) f(5,4,3) f(5,4,5) f(5,5,2) f(5,5,4) f(5,5,5) f(5,6,0) f(5,6,2) f(5,6,3) f(5,6,7) f(5,7,1) f(5,7,2) f(5,7,6) f(5,7,7) f(5,8,13) f(5,9,12) f(5,9,13) f(5,10,15) f(5,11,14) f(5,11,15) f(5,12,10) f(5,12,11) f(5,12,13) f(5,13,10) f(5,13,12) f(5,13,13) f(5,14,8) f(5,14,10) f(5,14,11) f(5,14,15) f(5,15,9) f(5,15,10) f(5,15,14) f(5,15,15) f(6,0,6) f(6,1,7) f(6,2,5) f(6,2,6) f(6,3,4) f(6,3,5) f(6,3,7) f(6,4,0) f(6,4,1) f(6,4,3) f(6,4,6) f(6,5,0) f(6,5,2) f(6,5,3) f(6,5,7) f(6,6,0) f(6,6,1) f(6,6,2) f(6,6,5) f(6,6,6) f(6,7,0) f(6,7,3) f(6,7,4) f(6,7,5) f(6,7,7) f(6,8,14) f(6,9,15) f(6,10,13) f(6,10,14) f(6,11,12) f(6,11,13) f(6,11,15) f(6,12,8) f(6,12,9) f(6,12,11) f(6,12,14) f(6,13,8) f(6,13,10) f(6,13,11) f(6,13,15) f(6,14,8) f(6,14,9) f(6,14,10) f(6,14,13) f(6,14,14) f(6,15,8) f(6,15,11) f(6,15,12) f(6,15,13) f(6,15,15) f(7,0,7) f(7,1,6) f(7,1,7) f(7,2,4) f(7,2,5) f(7,2,7) f(7,3,4) f(7,3,6) f(7,3,7) f(7,4,0) f(7,4,2) f(7,4,3) f(7,4,7) f(7,5,1) f(7,5,2) f(7,5,6) f(7,5,7) f(7,6,0) f(7,6,3) f(7,6,4) f(7,6,5) f(7,6,7) f(7,7,1) f(7,7,2) f(7,7,3) f(7,7,4) f(7,7,6) f(7,7,7) f(7,8,15) f(7,9,14) f(7,9,15) f(7,10,12) f(7,10,13) f(7,10,15) f(7,11,12) f(7,11,14) f(7,11,15) f(7,12,8) f(7,12,10) f(7,12,11) f(7,12,15) f(7,13,9) f(7,13,10) f(7,13,14) f(7,13,15) f(7,14,8) f(7,14,11) f(7,14,12) f(7,14,13) f(7,14,15) f(7,15,9) f(7,15,10) f(7,15,11) f(7,15,12) f(7,15,14) f(7,15,15) f(8,0,8) f(8,1,9) f(8,2,10) f(8,3,11) f(8,4,12) f(8,5,13) f(8,6,14) f(8,7,15) f(8,8,7) f(8,8,8) f(8,9,6) f(8,9,7) f(8,9,9) f(8,10,4) f(8,10,5) f(8,10,7) f(8,10,10) f(8,11,4) f(8,11,6) f(8,11,7) f(8,11,11) f(8,12,0) f(8,12,2) f(8,12,3) f(8,12,7) f(8,12,12) f(8,13,1) f(8,13,2) f(8,13,6) f(8,13,7) f(8,13,13) f(8,14,0) f(8,14,3) f(8,14,4) f(8,14,5) f(8,14,7) f(8,14,14) f(8,15,1) f(8,15,2) f(8,15,3) f(8,15,4) f(8,15,6) f(8,15,7) f(8,15,15) f(9,0,9) f(9,1,8) f(9,1,9) f(9,2,11) f(9,3,10) f(9,3,11) f(9,4,13) f(9,5,12) f(9,5,13) f(9,6,15) f(9,7,14) f(9,7,15) f(9,8,6) f(9,8,7) f(9,8,9) f(9,9,6) f(9,9,8) f(9,9,9) f(9,10,4) f(9,10,6) f(9,10,7) f(9,10,11) f(9,11,5) f(9,11,6) f(9,11,10) f(9,11,11) f(9,12,1) f(9,12,2) f(9,12,6) f(9,12,7) f(9,12,13) f(9,13,0) f(9,13,1) f(9,13,3) f(9,13,6) f(9,13,12) f(9,13,13) f(9,14,1) f(9,14,2) f(9,14,3) f(9,14,4) f(9,14,6) f(9,14,7) f(9,14,15) f(9,15,0) f(9,15,1) f(9,15,2) f(9,15,5) f(9,15,6) f(9,15,14) f(9,15,15) f(10,0,10) f(10,1,11) f(10,2,9) f(10,2,10) f(10,3,8) f(10,3,9) f(10,3,11) f(10,4,14) f(10,5,15) f(10,6,13) f(10,6,14) f(10,7,12) f(10,7,13) f(10,7,15) f(10,8,4) f(10,8,5) f(10,8,7) f(10,8,10) f(10,9,4) f(10,9,6) f(10,9,7) f(10,9,11) f(10,10,4) f(10,10,5) f(10,10,6) f(10,10,9) f(10,10,10) f(10,11,4) f(10,11,7) f(10,11,8) f(10,11,9) f(10,11,11) f(10,12,0) f(10,12,3) f(10,12,4) f(10,12,5) f(10,12,7) f(10,12,14) f(10,13,1) f(10,13,2) f(10,13,3) f(10,13,4) f(10,13,6) f(10,13,7) f(10,13,15) f(10,14,0) f(10,14,1) f(10,14,2) f(10,14,3) f(10,14,4) f(10,14,5) f(10,14,6) f(10,14,13) f(10,14,14) f(10,15,0) f(10,15,2) f(10,15,4) f(10,15,7) f(10,15,12) f(10,15,13) f(10,15,15) f(11,0,11) f(11,1,10) f(11,1,11) f(11,2,8) f(11,2,9) f(11,2,11) f(11,3,8) f(11,3,10) f(11,3,11) f(11,4,15) f(11,5,14) f(11,5,15) f(11,6,12) f(11,6,13) f(11,6,15) f(11,7,12) f(11,7,14) f(11,7,15) f(11,8,4) f(11,8,6) f(11,8,7) f(11,8,11) f(11,9,5) f(11,9,6) f(11,9,10) f(11,9,11) f(11,10,4) f(11,10,7) f(11,10,8) f(11,10,9) f(11,10,11) f(11,11,5) f(11,11,6) f(11,11,7) f(11,11,8) f(11,11,10) f(11,11,11) f(11,12,1) f(11,12,2) f(11,12,3) f(11,12,4) f(11,12,6) f(11,12,7) f(11,12,15) f(11,13,0) f(11,13,1) f(11,13,2) f(11,13,5) f(11,13,6) f(11,13,14) f(11,13,15) f(11,14,0) f(11,14,2) f(11,14,4) f(11,14,7) f(11,14,12) f(11,14,13) f(11,14,15) f(11,15,1) f(11,15,3) f(11,15,5) f(11,15,6) f(11,15,7) f(11,15,12) f(11,15,14) f(11,15,15) f(12,0,12) f(12,1,13) f(12,2,14) f(12,3,15) f(12,4,11) f(12,4,12) f(12,5,10) f(12,5,11) f(12,5,13) f(12,6,8) f(12,6,9) f(12,6,11) f(12,6,14) f(12,7,8) f(12,7,10) f(12,7,11) f(12,7,15) f(12,8,0) f(12,8,2) f(12,8,3) f(12,8,7) f(12,8,12) f(12,9,1) f(12,9,2) f(12,9,6) f(12,9,7) f(12,9,13) f(12,10,0) f(12,10,3) f(12,10,4) f(12,10,5) f(12,10,7) f(12,10,14) f(12,11,1) f(12,11,2) f(12,11,3) f(12,11,4) f(12,11,6) f(12,11,7) f(12,11,15) f(12,12,0) f(12,12,2) f(12,12,3) f(12,12,4) f(12,12,6) f(12,12,11) f(12,12,12) f(12,13,1) f(12,13,2) f(12,13,5) f(12,13,7) f(12,13,10) f(12,13,11) f(12,13,13) f(12,14,0) f(12,14,3) f(12,14,5) f(12,14,8) f(12,14,9) f(12,14,11) f(12,14,14) f(12,15,1) f(12,15,2) f(12,15,3) f(12,15,4) f(12,15,5) f(12,15,8) f(12,15,10) f(12,15,11) f(12,15,15) f(13,0,13) f(13,1,12) f(13,1,13) f(13,2,15) f(13,3,14) f(13,3,15) f(13,4,10) f(13,4,11) f(13,4,13) f(13,5,10) f(13,5,12) f(13,5,13) f(13,6,8) f(13,6,10) f(13,6,11) f(13,6,15) f(13,7,9) f(13,7,10) f(13,7,14) f(13,7,15) f(13,8,1) f(13,8,2) f(13,8,6) f(13,8,7) f(13,8,13) f(13,9,0) f(13,9,1) f(13,9,3) f(13,9,6) f(13,9,12) f(13,9,13) f(13,10,1) f(13,10,2) f(13,10,3) f(13,10,4) f(13,10,6) f(13,10,7) f(13,10,15) f(13,11,0) f(13,11,1) f(13,11,2) f(13,11,5) f(13,11,6) f(13,11,14) f(13,11,15) f(13,12,1) f(13,12,2) f(13,12,5) f(13,12,7) f(13,12,10) f(13,12,11) f(13,12,13) f(13,13,0) f(13,13,1) f(13,13,3) f(13,13,4) f(13,13,5) f(13,13,6) f(13,13,7) f(13,13,10) f(13,13,12) f(13,13,13) f(13,14,1) f(13,14,2) f(13,14,3) f(13,14,4) f(13,14,5) f(13,14,8) f(13,14,10) f(13,14,11) f(13,14,15) f(13,15,0) f(13,15,1) f(13,15,2) f(13,15,4) f(13,15,9) f(13,15,10) f(13,15,14) f(13,15,15) f(14,0,14) f(14,1,15) f(14,2,13) f(14,2,14) f(14,3,12) f(14,3,13) f(14,3,15) f(14,4,8) f(14,4,9) f(14,4,11) f(14,4,14) f(14,5,8) f(14,5,10) f(14,5,11) f(14,5,15) f(14,6,8) f(14,6,9) f(14,6,10) f(14,6,13) f(14,6,14) f(14,7,8) f(14,7,11) f(14,7,12) f(14,7,13) f(14,7,15) f(14,8,0) f(14,8,3) f(14,8,4) f(14,8,5) f(14,8,7) f(14,8,14) f(14,9,1) f(14,9,2) f(14,9,3) f(14,9,4) f(14,9,6) f(14,9,7) f(14,9,15) f(14,10,0) f(14,10,1) f(14,10,2) f(14,10,3) f(14,10,4) f(14,10,5) f(14,10,6) f(14,10,13) f(14,10,14) f(14,11,0) f(14,11,2) f(14,11,4) f(14,11,7) f(14,11,12) f(14,11,13) f(14,11,15) f(14,12,0) f(14,12,3) f(14,12,5) f(14,12,8) f(14,12,9) f(14,12,11) f(14,12,14) f(14,13,1) f(14,13,2) f(14,13,3) f(14,13,4) f(14,13,5) f(14,13,8) f(14,13,10) f(14,13,11) f(14,13,15) f(14,14,0) f(14,14,1) f(14,14,2) f(14,14,3) f(14,14,7) f(14,14,8) f(14,14,9) f(14,14,10) f(14,14,13) f(14,14,14) f(14,15,0) f(14,15,2) f(14,15,6) f(14,15,7) f(14,15,8) f(14,15,11) f(14,15,12) f(14,15,13) f(14,15,15) f(15,0,15) f(15,1,14) f(15,1,15) f(15,2,12) f(15,2,13) f(15,2,15) f(15,3,12) f(15,3,14) f(15,3,15) f(15,4,8) f(15,4,10) f(15,4,11) f(15,4,15) f(15,5,9) f(15,5,10) f(15,5,14) f(15,5,15) f(15,6,8) f(15,6,11) f(15,6,12) f(15,6,13) f(15,6,15) f(15,7,9) f(15,7,10) f(15,7,11) f(15,7,12) f(15,7,14) f(15,7,15) f(15,8,1) f(15,8,2) f(15,8,3) f(15,8,4) f(15,8,6) f(15,8,7) f(15,8,15) f(15,9,0) f(15,9,1) f(15,9,2) f(15,9,5) f(15,9,6) f(15,9,14) f(15,9,15) f(15,10,0) f(15,10,2) f(15,10,4) f(15,10,7) f(15,10,12) f(15,10,13) f(15,10,15) f(15,11,1) f(15,11,3) f(15,11,5) f(15,11,6) f(15,11,7) f(15,11,12) f(15,11,14) f(15,11,15) f(15,12,1) f(15,12,2) f(15,12,3) f(15,12,4) f(15,12,5) f(15,12,8) f(15,12,10) f(15,12,11) f(15,12,15) f(15,13,0) f(15,13,1) f(15,13,2) f(15,13,4) f(15,13,9) f(15,13,10) f(15,13,14) f(15,13,15) f(15,14,0) f(15,14,2) f(15,14,6) f(15,14,7) f(15,14,8) f(15,14,11) f(15,14,12) f(15,14,13) f(15,14,15) f(15,15,1) f(15,15,3) f(15,15,6) f(15,15,9) f(15,15,10) f(15,15,11) f(15,15,12) f(15,15,14) f(15,15,15)
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Items portrayed in this file
depicts
2013
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 19:31, 30 March 2013 | 2,048 × 2,048 (280 KB) | Watchduck | {{Information |Description ={{en|1=Binary tensor showing the same information like 200px Vertical and horizontal axes are like in the matrix, the binary numbers are shown in the depth, with the nearer p... |
File usage
The following page uses this file: