Field/Polynomial ring/Not finitely generated/Example
The polynomial ring over a field is not a finite-dimensional vector space. To see this, we have to show that there is no finite generating system for the polynomial ring. Consider polynomials . Let be the maximum of the degrees of these polynomials. Then every -linear combination has at most degree . In particular, polynomials of larger degree can not be presented by , so these do not form a generating system for all polynomials.