Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Factorial function/Recursive formula for 2k-1/Exercise
Language
Watch
Edit
Prove that for the factorial function the relationship
Fac
(
2
k
−
1
2
)
=
∏
i
=
1
k
(
2
i
−
1
)
2
k
⋅
π
{\displaystyle {}\operatorname {Fac} \,{\left({\frac {2k-1}{2}}\right)}={\frac {\prod _{i=1}^{k}(2i-1)}{2^{k}}}\cdot {\sqrt {\pi }}\,}
holds.
Create a solution