Extraterrestrial life/Astrosociobiology

Astrosociobiology (also referred to as exosociobiology, extraterrestrial intelligence (eti), and xenosociology) is the speculative scientific study of extraterrestrial civilizations and their possible social characteristics and developmental tendencies. The field involves the convergence of w:astrobiology, w:sociobiology and w:evolutionary biology. Hypothesized comparisons between human civilizations and those of extraterrestrials are frequently posited, placing the human situation in the same context as other extraterrestrial intelligences. Whenever possible, astrosociobiologists describe only those social characteristics that are thought to be common (or highly probable) to all civilizations. Since no extraterrestrial civilizations have ever been studied, the subject is entirely hypothetical and necessarily self-referential.

Methodologies edit

Sociobiology attempts to explain animal behavior, group behavior and social structure in terms of evolutionary advantage or strategy and using techniques from w:ethology, w:evolution and w:population genetics. Sociobiologists are especially interested in comparative analyses, particularly in studying human social institutions and culture.

Astrobiology is the speculative field within biology that considers the possible varieties and characteristics of extraterrestrial life. Astrobiologists speculate about the possible ways that organic life could come into being in the universe and the potential for artificial and postbiological life.

Astrosociobiologists, like evolutionary biologists and sociobiologists, are concerned with the phenomenon of w:convergent evolution, the evolutionary process in which organisms not closely related independently acquire some characteristic or characteristics in common, usually (but not necessarily) a reflection of similar responses to similar environmental conditions. Examples include physical traits that have evolved independently (e.g. the eye), ecological niches (e.g. pack predators), and even technological innovations (e.g. language, writing, the domestication of plants and animals, and basic tools and weapons). Astrosociobiologists take the potential for convergent evolution off-planet and speculate that certain ecological and sociological niches may not be Earth-specific or human-specific and are archetypal throughout the w:universe.

However, there may be limits to this kind of speculation, particularly if there is a dearth of comparable habitats to our own across the galaxy. Some thinkers, while acknowledging that biological and social evolution may follow similar patterns across the universe, also note the problem of evidence and the absence of extraterrestrial contact. w:Simon Conway Morris, in his book, Inevitable Humans in a Lonely Universe, notes life's "eerie" ability to repeatedly navigate to a single solution. "Eyes, brains, tools, even culture: all are very much on the cards," he writes. "So if these are all evolutionary inevitabilities, where are our counterparts across the galaxy? The tape of life can only run on a suitable planet, and it seems that such Earth-like planets may be much rarer than hoped. Inevitable humans, yes, but in a lonely Universe."[1]

Assumptions edit

In order for astrosociobiologists to embark on speculations about the condition and characteristics of extraterrestrial civilizations, a number of assumptions are necessarily invoked:

  1. Extraterrestrial civilizations exist
  2. Extraterrestrial civilizations operate in agreement with the known laws of physics
  3. Extraterrestrial civilizations must in some part resemble our own, both in terms of:
    1. morphological and psychological characteristics, and
    2. civilizational traits and tendencies

In other words, astrosociobiologists assume that intelligent life arises from similar environmental conditions and similar evolutionary processes as humanity.

It is currently difficult to tell if these are valid assumptions. For example, the w:Rare Earth hypothesis and the w:Fermi Paradox suggests that we might be alone in the galaxy. It's also conceivable that aliens and their civilizations may scarcely resemble our own. Astrosociobiology also involves a fair degree of w:environmental determinism. Astrosociobiologists counterargue that all of these points can be countered by the w:Copernican principle and the w:self-sampling assumption (a variant of the w:anthropic principle). We shouldn't assume, they argue, that we're unique and we should start from the premise that we are very typical.

Possible unique aspects of Earth life edit

It is possible that the unique conditions on w:Earth allow for specific technologies to develop which would take many times longer for a w:civilization not having these conditions to achieve. The list of possibly unique conditions on Earth, and of related discoveries, is quite long. Some examples:

It is possible that the conditions for the creation of w:hydrocarbons, w:coal, or w:natural gas would not exist on other planets. These w:fuels were essential for us to move past dependence upon wood and animal based energy systems. Although w:waterwheel, wind, and w:solar energy technologies existed, they were not developed further until suitable industrial techniques were found to produce better materials. These techniques consume massive amounts of energy, and therefore could not be powered by the unimproved technologies. A similar argument could be made that without w:fossil fuel technologies, more powerful technologies, such as w:nuclear reactors, could not develop.

Counter-argument: abundance of alternative sources edit

Human perception has a natural bias towards the known w:energy development paths of Human civilization. It must also be noted that during both the w:1973 energy crisis and the w:1979 energy crisis highly industrialized societies continued to function; many moved towards developing alternative energy technologies on a massive scale under the assumption that these could provide the energy needed to continue industrial and commercial processes should w:fossil fuel supplies be compromised in some critical way.

Given this development, it is possible that a society could develop without a stage where w:fossil fuel based energy production occurs. This version of w:Buckminster Fuller's argument on w:current solar income conforms with w:Paul Hawken's idea of w:restorative economy, stating that w:fossil fuel based energy production is not essential nor desirable given the effects and alternatives.

Possible extraterrestrial characteristics edit

Given these assumptions, astrosociobiologists attempt to make predictions about those characteristics that may be common to .all extraterrestrial societies. For example, based on human experience, astrosociobiologists conclude very broadly that all civilizations go through similar developmental stages, including w:stone age and w:agrarian culture, w:industrialization, w:globalization, and an w:information age. Similar assumptions are made about the development of technological innovations (universal technological archetypes) and scientific breakthroughs (including the rough chronological order in which these advancements are developed). The possibility also exists for the existence of common cultural and meta-w:ethical characteristics of advanced societies (i.e. the notion that advanced societies will independently reach the same conclusions about ethics, morality and social imperatives). ,See w:Evolutionary ethics

Astrosociobiologists also theorize about the existence of developmental mechanisms that constrain and give directionality to the evolution of organisms and society itself. One such guiding evolutionary force is the notion of the w:megatrajectory. Posited by w:A. H. Knoll and w:R. K. Bambach in their w:2000 collaboration, "Directionality in the History of Life," Knoll and Bamback argue that, in consideration of the problem of progress in evolutionary history, a middle road that encompasses both contingent and convergent features of biological w:evolution may be attainable through the idea of the megatrajectory:

"We believe that six broad megatrajectories capture the essence of vectoral change in the history of life. The megatrajectories for a logical sequence dictated by the necessity for complexity level N to exist before N+1 can evolve...In the view offered here, each megatrajectory adds new and qualitatively distinct dimensions to the way life utilizes ecospace."[3]

According to Knoll and Bambach, the six megatrajectories outlined by biological evolution thus far are:

  1. the w:origin of life to the "Last Common Ancestor"
  2. w:prokaryote diversification
  3. unicellular w:eukaryote diversification
  4. multicellular organisms
  5. land organisms See w:Prehistoric amphibian & w:Prehistoric insects
  6. appearance of intelligence and w:technology

See also :- w:Timeline of evolution

The above presupposes that intelligence and technology cannot develop in w:Aquatic ecosystems. Cetaceans are intelligent as are some Cephalopods. As land based organisms we cannot work out what routes to technology may or may not be feasible under water. This is similar to w:Carbon chauvinism.

Some astrosociobiologists, such as w:Milan Ćirković and w:Robert J. Bradbury, have taken the megatrajectory concept one step further by theorizing that a seventh megatrajectory exists: postbiological w:evolution triggered by the emergence of w:artificial intelligence at least equivalent to the biologically-evolved one, as well as the invention of several key technologies of the similar level of complexity and environmental impact, such as molecular nanoassembling or stellar uplifting.

Along similar lines, historian of science w:Steven J. Dick, in his w:2003 paper "Cultural Evolution, the Postbiological Universe and SETI," posited a central concept of cultural evolution he called the Intelligence Principle:

"The maintenance, improvement and perpetuation of knowledge and intelligence is the central driving force of cultural evolution, and that to the extent intelligence can be improved, it will be improved."[4]

It is through the application of this principle, argues Dick, that speculations about the developmental tendencies of advanced civilizations can be made.

The difficultly of engaging in such speculation, however, is that it is highly theoretical; there is very little empirical evidence. Moreover, humanity hasn't progressed through these later developmental stages. Astrosociobiologists currently have no w:data to support the idea that human civilization will continue on into the foreseeable future. Indeed, in considering the w:Fermi Paradox, scientists may actually have a data point suggesting a limitation to how far advanced civilizations can develop.

However, with each advancing step that the human species takes, astrosociobiologists will assume that extraterrestrials--both past and present –will have gone through similar stages.

Civilization types edit

A method for classifying civilization types was introduced by Russian w:astronomer w:Nikolai Kardashev in w:1964. Known as the w:Kardashev scale, classifications are assigned based on the amount of usable w:energy a w:civilization has at its disposal and increasing logarithmically:

  • Type I - A civilization that is able to harness all of the power available on a single w:planet, approximately 1016W.
  • Type II - A civilization that is able to harness all of the power available from a single w:star, approximately 1026W.
  • Type III - A civilization that is able to harness all of the power available from a single w:galaxy, approximately 1036W.

Human civilization has yet to achieve full Type I status, as it is able to harness only a portion of the energy that is available on Earth. w:Carl Sagan speculated that humanity's current civilization type is around 0.7.

Notable astrosociobiologists edit

See also edit

References edit

  1. Morris, Simon Conway (2004). Life's Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press. ISBN 0-521-60325-0. 
  2. Comins, Neil F. (1995). What if the Moon Didn't Exist?: Voyages to Earths That Might Have Been. Harper Perennial. ISBN 0-06-092556-6. 
  3. "Directionality in the history of life: diffusion from the left wall or repeated scaling of the right" by R. K. Bambach and A.H. Knoll in Paleobiology (2000) Volume 26 pages 1-14
  4. "Cultural Evolution, the Postbiological Universe and SETI" by Steven J. Dick in "International Journal of Astrobiology" (2003) volume 2, pages 65-74.

External links edit