Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Exponential series/Real/Elementary properties/Fact
Language
Watch
Edit
The
exponential function
R
⟶
R
,
x
⟼
exp
x
,
{\displaystyle \mathbb {R} \longrightarrow \mathbb {R} ,x\longmapsto \exp x,}
fulfills the following properties.
exp
0
=
1
{\displaystyle {}\exp 0=1}
.
For every
x
∈
R
{\displaystyle {}x\in \mathbb {R} }
, we have
exp
(
−
x
)
=
(
exp
x
)
−
1
{\displaystyle {}\exp {\left(-x\right)}=(\exp x)^{-1}}
. In particular
exp
x
≠
0
{\displaystyle {}\exp x\neq 0}
.
For integers
n
∈
Z
{\displaystyle {}n\in \mathbb {Z} }
, the relation
exp
n
=
(
exp
1
)
n
{\displaystyle {}\exp n=(\exp 1)^{n}}
holds.
For every
x
{\displaystyle {}x}
, we have
exp
x
∈
R
+
{\displaystyle {}\exp x\in \mathbb {R} _{+}}
.
For
x
>
0
{\displaystyle {}x>0}
we have
exp
x
>
1
{\displaystyle {}\exp x>1}
, and for
x
<
0
{\displaystyle {}x<0}
we have
exp
x
<
1
{\displaystyle {}\exp x<1}
.
The real exponential function is
strictly increasing
.
Proof
,
Write another proof