The general second-order Euler–Cauchy equation is:
a
x
2
y
″
+
b
x
y
′
+
c
y
=
0
{\displaystyle ax^{2}y''+bxy'+cy=0}
where a , b , and c can be any (real) constants.
Solving by the Method of Frobenius
edit
The leading coefficient function
a
x
2
{\displaystyle ax^{2}}
is 0 at
x
=
0
{\displaystyle x=0}
; so there is a singular point at
x
=
0
{\displaystyle x=0}
. Normal form is:
y
″
+
p
(
x
)
y
′
+
q
(
x
)
y
=
0
{\displaystyle y''+p(x)y'+q(x)y=0}
where
p
(
x
)
=
b
a
x
{\displaystyle p(x)={b \over ax}}
and
q
(
x
)
=
c
a
x
2
{\displaystyle q(x)={c \over ax^{2}}}
.
Then
x
p
(
x
)
=
b
a
{\displaystyle xp(x)={b \over a}}
and
x
2
q
(
x
)
=
c
a
{\displaystyle x^{2}q(x)={c \over a}}
. These two functions,
x
p
(
x
)
{\displaystyle xp(x)}
and
x
2
q
(
x
)
{\displaystyle x^{2}q(x)}
, have no discontinuities; so the singular point is regular. Thus the method of Frobenius is applicable to this E.C.e. at
x
=
0
{\displaystyle x=0}
.
Let
y
=
∑
n
=
0
∞
k
n
x
n
+
r
{\displaystyle y=\sum _{n=0}^{\infty }k_{n}x^{n+r}}
be a tentative Frobenius-series solution. Then
y
′
=
∑
n
=
0
∞
k
n
(
n
+
r
)
x
n
+
r
−
1
{\displaystyle y'=\sum _{n=0}^{\infty }k_{n}(n+r)x^{n+r-1}}
y
″
=
∑
n
=
0
∞
k
n
(
n
+
r
)
(
n
+
r
−
1
)
x
n
+
r
−
2
{\displaystyle y''=\sum _{n=0}^{\infty }k_{n}(n+r)(n+r-1)x^{n+r-2}}
Substituting these into the E.C.e. yields
∑
k
=
0
∞
k
n
[
a
(
n
+
r
)
(
n
+
r
−
1
)
+
b
(
n
+
r
)
+
c
]
x
n
+
r
=
0
{\displaystyle \sum _{k=0}^{\infty }k_{n}[a(n+r)(n+r-1)+b(n+r)+c]x^{n+r}=0}
Since the L.H.S. is identically equal to 0, then each coefficient of the Frobenius series must equal 0:
k
n
[
a
(
n
+
r
)
(
n
+
r
−
1
)
+
b
(
n
+
r
)
+
c
]
=
0
{\displaystyle k_{n}[a(n+r)(n+r-1)+b(n+r)+c]=0}
k
n
[
a
(
n
+
r
)
2
+
(
b
−
a
)
(
n
+
r
)
+
c
]
=
0
{\displaystyle k_{n}[a(n+r)^{2}+(b-a)(n+r)+c]=0}
When
n
=
0
{\displaystyle n=0}
,
k
0
(
a
r
2
+
(
b
−
a
)
r
+
c
)
=
0
{\displaystyle k_{0}(ar^{2}+(b-a)r+c)=0}
Letting
k
0
≠
0
{\displaystyle k_{0}\neq 0}
, then
a
r
2
+
(
b
−
a
)
r
+
c
=
0
{\displaystyle ar^{2}+(b-a)r+c=0}
is the indicial equation. Its roots are
r
1
=
−
(
b
−
a
)
+
(
b
−
a
)
2
−
4
a
c
2
a
{\displaystyle r_{1}={-(b-a)+{\sqrt {(b-a)^{2}-4ac}} \over 2a}}
r
2
=
−
(
b
−
a
)
−
(
b
−
a
)
2
−
4
a
c
2
a
{\displaystyle r_{2}={-(b-a)-{\sqrt {(b-a)^{2}-4ac}} \over 2a}}
If there exists some integer
n
1
{\displaystyle n_{1}}
such that
a
(
n
1
+
r
)
2
+
(
b
−
a
)
(
n
1
+
r
)
+
c
=
0
{\displaystyle a(n_{1}+r)^{2}+(b-a)(n_{1}+r)+c=0}
then either
r
2
=
n
1
+
r
1
{\displaystyle r_{2}=n_{1}+r_{1}}
or
r
1
=
n
1
+
r
2
{\displaystyle r_{1}=n_{1}+r_{2}}
(since
r
1
{\displaystyle r_{1}}
and
r
2
{\displaystyle r_{2}}
are the only two solutions of the indicial equation); and there can be at most one such
n
1
{\displaystyle n_{1}}
. For all other values of
n
{\displaystyle n}
, the equation
a
(
n
+
r
)
2
+
(
b
−
a
)
(
n
+
r
)
+
c
=
0
{\displaystyle a(n+r)^{2}+(b-a)(n+r)+c=0}
is not satisfied, which means that
k
n
=
0
{\displaystyle k_{n}=0}
for all
n
{\displaystyle n}
such that
n
≠
0
{\displaystyle n\neq 0}
and
n
≠
n
1
{\displaystyle n\neq n_{1}}
. (N.B.: If
r
2
−
r
1
{\displaystyle r_{2}-r_{1}}
is not an integer then such an
n
1
{\displaystyle n_{1}}
does not exist.)
y
1
=
k
0
x
r
1
{\displaystyle y_{1}=k_{0}x^{r_{1}}}
or
y
1
=
k
0
x
r
1
+
k
n
1
x
r
1
+
n
1
=
k
0
x
r
1
+
k
n
1
x
r
2
{\displaystyle y_{1}=k_{0}x^{r_{1}}+k_{n_{1}}x^{r_{1}+n_{1}}=k_{0}x^{r_{1}}+k_{n_{1}}x^{r_{2}}}
y
2
=
h
0
x
r
2
{\displaystyle y_{2}=h_{0}x^{r_{2}}}
or
y
2
=
h
0
x
r
2
+
h
n
1
x
r
2
+
n
1
=
h
0
x
r
2
+
h
n
1
x
r
1
{\displaystyle y_{2}=h_{0}x^{r_{2}}+h_{n_{1}}x^{r_{2}+n_{1}}=h_{0}x^{r_{2}}+h_{n_{1}}x^{r_{1}}}
The two right sides of the two logical disjunctions cannot be simultaneously true. Since
k
n
1
{\displaystyle k_{n_{1}}}
is independent of
k
0
{\displaystyle k_{0}}
, then a solution such as
y
1
=
k
0
x
r
1
+
k
n
1
x
r
2
{\displaystyle y_{1}=k_{0}x^{r_{1}}+k_{n_{1}}x^{r_{2}}}
is a linear combination of linearly independent solutions.
|
x
r
1
x
r
2
r
1
x
r
1
−
1
r
2
x
r
2
−
1
|
=
r
2
x
r
1
x
r
2
−
1
−
r
1
x
r
1
−
1
x
r
2
=
(
r
2
−
r
1
)
x
r
1
+
r
2
−
1
{\displaystyle {\Bigg |}{\begin{matrix}x^{r_{1}}&x^{r_{2}}\\r_{1}x^{r_{1}-1}&r_{2}x^{r_{2}-1}\end{matrix}}{\Bigg |}=r_{2}x^{r_{1}}x^{r_{2}-1}-r_{1}x^{r_{1}-1}x^{r_{2}}=(r_{2}-r_{1})x^{r_{1}+r_{2}-1}}
Assuming that
r
2
≠
r
1
{\displaystyle r_{2}\neq r_{1}}
then this Wronskian is never zero, so the two terms of the solution
y
1
{\displaystyle y_{1}}
are actually linearly independent solutions. (The case when
r
2
=
r
1
{\displaystyle r_{2}=r_{1}}
will be dealt with further down from here.) The second term of
y
1
{\displaystyle y_{1}}
is just “echoing” the other solution
y
2
=
h
0
x
r
2
{\displaystyle y_{2}=h_{0}x^{r_{2}}}
, so to speak. So the general solution is
y
=
k
0
x
r
1
+
h
0
x
r
2
{\displaystyle y=k_{0}x^{r_{1}}+h_{0}x^{r_{2}}}
The case of complex conjugate indicial roots
edit
If
r
1
,
2
{\displaystyle r_{1,2}}
are a complex conjugate pair,
r
1
,
2
=
α
±
i
β
{\displaystyle r_{1,2}=\alpha \pm i\beta }
then
y
=
k
0
x
α
x
i
β
+
h
0
x
α
x
−
i
β
{\displaystyle y=k_{0}x^{\alpha }x^{i\beta }+h_{0}x^{\alpha }x^{-i\beta }}
y
=
k
0
x
α
e
i
β
ln
x
+
h
0
x
α
e
−
i
β
ln
x
{\displaystyle y=k_{0}x^{\alpha }e^{i\beta \ln x}+h_{0}x^{\alpha }e^{-i\beta \ln x}}
If
k
0
{\displaystyle k_{0}}
is set to
A
/
2
{\displaystyle A/2}
and
h
0
{\displaystyle h_{0}}
is set to
A
/
2
{\displaystyle A/2}
as well then
y
=
A
x
α
cos
(
β
ln
x
)
{\displaystyle y=Ax^{\alpha }\cos(\beta \ln x)}
as may be derived through Euler's formula
e
i
θ
=
cos
θ
+
i
sin
θ
{\displaystyle e^{i\theta }=\cos \theta +i\sin \theta }
. If
k
0
=
B
2
i
{\displaystyle k_{0}={B \over 2i}}
and
h
0
=
−
B
2
i
{\displaystyle h_{0}={-B \over 2i}}
then
y
=
B
x
α
sin
(
β
ln
x
)
{\displaystyle y=Bx^{\alpha }\sin(\beta \ln x)}
These two solutions are linearly independent as can be verified by calculating their Wronskian:
|
x
α
cos
(
β
ln
x
)
x
α
sin
(
β
ln
x
)
x
α
−
1
(
α
cos
(
β
ln
x
)
−
β
sin
(
β
ln
x
)
)
x
α
−
1
(
α
sin
(
β
ln
x
)
+
β
cos
(
β
ln
x
)
)
|
{\displaystyle {\Bigg |}{\begin{matrix}x^{\alpha }\cos(\beta \ln x)&x^{\alpha }\sin(\beta \ln x)\\x^{\alpha -1}(\alpha \cos(\beta \ln x)-\beta \sin(\beta \ln x))&x^{\alpha -1}(\alpha \sin(\beta \ln x)+\beta \cos(\beta \ln x))\end{matrix}}{\Bigg |}}
=
x
2
α
−
1
β
{\displaystyle =x^{2\alpha -1}\beta }
which is non-zero almost everywhere. Thus
y
=
A
x
α
cos
(
β
ln
x
)
+
B
x
α
sin
(
β
ln
x
)
{\displaystyle y=Ax^{\alpha }\cos(\beta \ln x)+Bx^{\alpha }\sin(\beta \ln x)}
is a general solution.
The case of equal indicial roots
edit
If
r
1
=
r
2
{\displaystyle r_{1}=r_{2}}
, let
r
=
r
1
=
r
2
{\displaystyle r=r_{1}=r_{2}}
;
y
1
=
x
r
{\displaystyle y_{1}=x^{r}}
is one solution. The other one may be determined through the method of undetermined coefficients. Let
y
2
=
u
x
r
{\displaystyle y_{2}=ux^{r}}
where
u
{\displaystyle u}
is a function of
x
{\displaystyle x}
. Now derive:
y
2
′
=
u
′
x
r
+
u
r
x
r
−
1
{\displaystyle y_{2}'=u'x^{r}+urx^{r-1}}
y
2
″
=
u
″
x
r
+
2
u
′
r
x
r
−
1
+
u
r
(
r
−
1
)
x
r
−
2
{\displaystyle y_{2}''=u''x^{r}+2u'rx^{r-1}+ur(r-1)x^{r-2}}
The original E.C.e. is
a
x
2
y
″
+
b
x
y
′
+
c
y
=
0
{\displaystyle ax^{2}y''+bxy'+cy=0}
Substitute
y
2
{\displaystyle y_{2}}
and its derivatives into the E.C.e.:
a
x
2
(
u
″
x
r
+
2
u
′
r
x
r
−
1
+
u
r
(
r
−
1
)
x
r
−
2
)
+
b
x
(
u
′
x
r
+
u
r
x
r
−
1
)
+
c
u
x
r
=
0
{\displaystyle ax^{2}(u''x^{r}+2u'rx^{r-1}+ur(r-1)x^{r-2})+bx(u'x^{r}+urx^{r-1})+cux^{r}=0}
Distribute:
a
u
″
x
r
+
2
+
2
a
u
′
r
x
r
+
1
+
a
u
r
(
r
−
1
)
x
r
+
b
u
′
x
r
+
1
+
b
u
r
x
r
+
c
u
x
r
=
0
{\displaystyle au''x^{r+2}+2au'rx^{r+1}+aur(r-1)x^{r}+bu'x^{r+1}+burx^{r}+cux^{r}=0}
Group by derivatives of
u
{\displaystyle u}
:
u
″
a
x
r
+
2
+
u
′
(
2
a
r
x
r
+
1
+
b
x
r
+
1
)
+
u
[
a
r
(
r
−
1
)
x
r
+
b
r
x
r
+
c
x
r
]
=
0
{\displaystyle u''ax^{r+2}+u'(2arx^{r+1}+bx^{r+1})+u[ar(r-1)x^{r}+brx^{r}+cx^{r}]=0}
Factor out powers of
x
{\displaystyle x}
:
u
″
a
x
r
+
2
+
u
′
(
2
a
r
+
b
)
x
r
+
1
+
u
[
a
r
(
r
−
1
)
+
b
r
+
c
]
x
r
=
0
{\displaystyle u''ax^{r+2}+u'(2ar+b)x^{r+1}+u[ar(r-1)+br+c]x^{r}=0}
The expression within the square brackets is the indicial equation, for which
r
{\displaystyle r}
is the root, so the third term in the sum of the L.H.S. vanishes.
u
″
a
x
r
+
2
+
u
′
(
2
a
r
+
b
)
x
r
+
1
=
0
{\displaystyle u''ax^{r+2}+u'(2ar+b)x^{r+1}=0}
For
x
>
0
{\displaystyle x>0}
,
x
r
+
1
≠
0
{\displaystyle x^{r+1}\neq 0}
, so divide by
x
r
+
1
{\displaystyle x^{r+1}}
:
u
″
a
x
+
u
′
(
2
a
r
+
b
)
=
0
{\displaystyle u''ax+u'(2ar+b)=0}
And here note well that
2
a
r
+
b
=
a
{\displaystyle 2ar+b=a}
, thus
u
″
a
x
+
u
′
a
=
0
{\displaystyle u''ax+u'a=0}
u
″
x
+
u
′
=
0
{\displaystyle u''x+u'=0}
Let
u
′
=
v
{\displaystyle u'=v}
, so that
v
′
=
u
″
{\displaystyle v'=u''}
:
v
′
x
+
v
=
0
{\displaystyle v'x+v=0}
v
′
v
=
−
1
x
{\displaystyle {v' \over v}=-{1 \over x}}
∫
d
v
v
=
−
∫
d
x
x
{\displaystyle \int {dv \over v}=-\int {dx \over x}}
ln
|
v
|
=
−
(
ln
|
x
|
+
k
0
)
{\displaystyle \ln |v|=-(\ln |x|+k_{0})}
|
v
|
=
e
−
ln
|
x
|
−
k
0
=
k
1
|
x
|
{\displaystyle |v|=e^{-\ln |x|-k_{0}}={k_{1} \over |x|}}
v
=
k
1
x
=
u
′
{\displaystyle v={k_{1} \over x}=u'}
assuming that
x
>
0
{\displaystyle x>0}
.
u
=
∫
k
1
x
d
x
=
k
1
ln
x
{\displaystyle u=\int {k_{1} \over x}dx=k_{1}\ln x}
So
y
2
=
u
x
r
=
k
1
x
r
ln
x
{\displaystyle y_{2}=ux^{r}=k_{1}x^{r}\ln x}
and the general solution is
y
=
k
0
x
r
+
k
1
x
r
ln
x
{\displaystyle y=k_{0}x^{r}+k_{1}x^{r}\ln x}
Recalling the second order Euler–Cauchy equation:
a
x
2
y
″
+
b
x
y
′
+
c
y
=
0
{\displaystyle ax^{2}y''+bxy'+cy=0}
Let
z
=
ln
x
{\displaystyle z=\ln x}
. This is suggested by the solution
x
α
cos
(
β
ln
x
)
{\displaystyle x^{\alpha }\cos(\beta \ln x)}
corresponding to the indicial root
α
+
i
β
{\displaystyle \alpha +i\beta }
, with
cos
(
β
ln
x
)
{\displaystyle \cos(\beta \ln x)}
instead of
cos
(
β
x
)
{\displaystyle \cos(\beta x)}
and
sin
(
β
ln
x
)
{\displaystyle \sin(\beta \ln x)}
instead of
sin
(
β
x
)
{\displaystyle \sin(\beta x)}
. So, letting
z
=
ln
x
{\displaystyle z=\ln x}
, what happens when
y
{\displaystyle y}
is derived with respect to
z
{\displaystyle z}
instead of w.r.t.
x
{\displaystyle x}
?
d
y
d
x
=
d
y
d
z
d
z
d
x
=
1
x
d
y
d
z
{\displaystyle {dy \over dx}={dy \over dz}{dz \over dx}={1 \over x}{dy \over dz}}
D
y
=
1
x
D
y
{\displaystyle Dy={1 \over x}{\mathfrak {D}}y}
where
D
=
d
/
d
z
{\displaystyle {\mathfrak {D}}=d/dz}
.
x
D
y
=
D
y
{\displaystyle xDy={\mathfrak {D}}y}
D
(
1
x
)
=
D
(
1
x
)
D
x
{\displaystyle {\mathfrak {D}}{\Big (}{1 \over x}{\Big )}=D{\Big (}{1 \over x}{\Big )}{\mathfrak {D}}x}
x
=
e
z
{\displaystyle x=e^{z}}
so
D
x
=
x
{\displaystyle {\mathfrak {D}}x=x}
D
(
1
x
)
=
−
1
x
2
x
=
−
1
x
{\displaystyle {\mathfrak {D}}{\Big (}{1 \over x}{\Big )}=-{1 \over x^{2}}x=-{1 \over x}}
D
2
y
=
1
x
D
(
1
x
D
y
)
{\displaystyle D^{2}y={1 \over x}{\mathfrak {D}}{\Big (}{1 \over x}{\mathfrak {D}}y{\Big )}}
D
2
y
=
1
x
[
D
(
1
x
)
D
y
+
1
x
D
2
y
]
=
1
x
[
−
1
x
D
y
+
1
x
D
2
y
]
{\displaystyle D^{2}y={1 \over x}{\Bigg [}{\mathfrak {D}}{\Big (}{1 \over x}{\Big )}{\mathfrak {D}}y+{1 \over x}{\mathfrak {D}}^{2}y{\Bigg ]}={1 \over x}{\Bigg [}-{1 \over x}{\mathfrak {D}}y+{1 \over x}{\mathfrak {D}}^{2}y{\Bigg ]}}
D
2
y
=
1
x
2
D
(
D
−
1
)
y
{\displaystyle D^{2}y={1 \over x^{2}}{\mathfrak {D}}({\mathfrak {D}}-1)y}
x
2
D
2
y
=
D
(
D
−
1
)
y
{\displaystyle x^{2}D^{2}y={\mathfrak {D}}({\mathfrak {D}}-1)y}
So
(
a
x
2
D
2
+
b
x
D
+
c
)
y
=
0
{\displaystyle (ax^{2}D^{2}+bxD+c)y=0}
becomes
(
a
D
(
D
−
1
)
+
b
D
+
c
)
y
=
0
{\displaystyle (a{\mathfrak {D}}({\mathfrak {D}}-1)+b{\mathfrak {D}}+c)y=0}
(
a
D
2
+
(
b
−
a
)
D
+
c
)
y
=
0
{\displaystyle (a{\mathfrak {D}}^{2}+(b-a){\mathfrak {D}}+c)y=0}
which is a “H.O.L.D.E.” (Homogeneous Ordinary Linear Differential Equation) with constant coefficients and characteristic equation
a
r
2
+
(
b
−
a
)
r
+
c
=
0
{\displaystyle ar^{2}+(b-a)r+c=0}
If its two roots
r
1
,
2
{\displaystyle r_{1,2}}
are real and distinct then the H.O.L.D.E.w.c.c. has solution
y
=
k
1
e
r
1
z
+
k
2
e
r
2
z
{\displaystyle y=k_{1}e^{r_{1}z}+k_{2}e^{r_{2}z}}
where
z
=
ln
x
{\displaystyle z=\ln x}
so the E.C.e. has solution
y
=
k
1
x
r
1
+
k
2
x
r
2
{\displaystyle y=k_{1}x^{r_{1}}+k_{2}x^{r_{2}}}
If the characteristic equation has two equal (and thus real) roots then the H.O.L.D.E.w.c.c. has solution
y
=
k
1
e
r
z
+
k
2
z
e
r
z
{\displaystyle y=k_{1}e^{rz}+k_{2}ze^{rz}}
so the E.C.e. has solution
y
=
k
1
x
r
+
k
2
x
r
ln
x
{\displaystyle y=k_{1}x^{r}+k_{2}x^{r}\ln x}
If the roots are a complex conjugate pair then the H.O.L.D.E.w.c.c. has solution
y
=
k
1
e
α
z
cos
(
β
z
)
+
k
2
e
α
z
sin
(
β
z
)
{\displaystyle y=k_{1}e^{\alpha z}\cos(\beta z)+k_{2}e^{\alpha z}\sin(\beta z)}
where, again,
z
=
ln
x
{\displaystyle z=\ln x}
so the E.C.e. has solution
y
=
k
1
x
α
cos
(
β
ln
x
)
+
k
2
x
α
sin
(
β
ln
x
)
{\displaystyle y=k_{1}x^{\alpha }\cos(\beta \ln x)+k_{2}x^{\alpha }\sin(\beta \ln x)}
d
d
z
(
1
x
2
)
=
d
d
z
(
e
−
2
z
)
=
−
2
e
−
2
z
=
−
2
x
2
{\displaystyle {d \over dz}{\Big (}{1 \over x^{2}}{\Big )}={d \over dz}(e^{-2z})=-2e^{-2z}={-2 \over x^{2}}}
D
3
y
=
D
D
2
y
=
D
(
1
x
2
D
(
D
−
1
)
y
)
{\displaystyle D^{3}y=DD^{2}y=D{\Big (}{1 \over x^{2}}{\mathfrak {D}}({\mathfrak {D}}-1)y{\Big )}}
=
1
x
D
(
1
x
2
(
D
2
−
D
)
y
)
{\displaystyle \qquad ={1 \over x}{\mathfrak {D}}{\Bigg (}{1 \over x^{2}}{\Big (}{\mathfrak {D}}^{2}-{\mathfrak {D}})y{\Bigg )}}
=
1
x
[
D
(
1
x
2
)
(
D
2
−
D
)
y
+
1
x
2
D
(
D
2
−
D
)
y
]
{\displaystyle \qquad ={1 \over x}{\Bigg [}{\mathfrak {D}}{\Big (}{1 \over x^{2}}{\Big )}({\mathfrak {D}}^{2}-{\mathfrak {D}})y+{1 \over x^{2}}{\mathfrak {D}}({\mathfrak {D}}^{2}-{\mathfrak {D}})y{\Bigg ]}}
=
1
x
[
−
2
x
2
(
D
2
−
D
)
y
+
1
x
2
(
D
3
−
D
2
)
y
]
{\displaystyle \qquad ={1 \over x}{\Bigg [}{-2 \over x^{2}}({\mathfrak {D}}^{2}-{\mathfrak {D}})y+{1 \over x^{2}}({\mathfrak {D}}^{3}-{\mathfrak {D}}^{2})y{\Bigg ]}}
=
1
x
3
(
D
3
−
3
D
2
+
2
D
)
y
{\displaystyle \qquad ={1 \over x^{3}}({\mathfrak {D}}^{3}-3{\mathfrak {D}}^{2}+2{\mathfrak {D}})y}
D
3
y
=
1
x
3
D
(
D
−
1
)
(
D
−
2
)
y
{\displaystyle \qquad D^{3}y={1 \over x^{3}}{\mathfrak {D}}({\mathfrak {D}}-1)({\mathfrak {D}}-2)y}
x
3
D
3
y
=
D
(
D
−
1
)
(
D
−
2
)
y
{\displaystyle x^{3}D^{3}y={\mathfrak {D}}({\mathfrak {D}}-1)({\mathfrak {D}}-2)y}
This can be generalized:
x
n
D
n
y
=
D
(
D
−
1
)
(
D
−
2
)
.
.
.
(
D
−
(
n
−
1
)
)
y
{\displaystyle x^{n}D^{n}y={\mathfrak {D}}({\mathfrak {D}}-1)({\mathfrak {D}}-2)...({\mathfrak {D}}-(n-1))y}
To prove it, use mathematical induction. The base cases have already been proven. As inductive hypothesis, take this very formula that is to be proven. Divide it by
x
n
{\displaystyle x^{n}}
and apply
D
{\displaystyle D}
to (both sides of) it:
D
(
D
n
)
y
=
D
[
1
x
n
D
(
D
−
1
)
.
.
.
(
D
−
(
n
−
1
)
)
y
]
{\displaystyle D(D^{n})y=D{\Bigg [}{1 \over x^{n}}{\mathfrak {D}}({\mathfrak {D}}-1)...({\mathfrak {D}}-(n-1))y{\Bigg ]}}
=
1
x
D
[
1
x
n
D
(
D
−
1
)
.
.
.
(
D
−
(
n
−
1
)
)
y
]
{\displaystyle \qquad ={1 \over x}{\mathfrak {D}}{\Bigg [}{1 \over x^{n}}{\mathfrak {D}}({\mathfrak {D}}-1)...({\mathfrak {D}}-(n-1))y{\Bigg ]}}
=
1
x
[
−
n
x
n
+
1
x
n
D
]
D
(
D
−
1
)
.
.
.
(
D
−
(
n
−
1
)
)
y
{\displaystyle \qquad ={1 \over x}{\Bigg [}{-n \over x^{n}}+{1 \over x^{n}}{\mathfrak {D}}{\Bigg ]}{\mathfrak {D}}({\mathfrak {D}}-1)...({\mathfrak {D}}-(n-1))y}
D
n
+
1
y
=
1
x
n
+
1
(
D
−
n
)
D
(
D
−
1
)
.
.
.
(
D
−
(
n
−
1
)
)
y
{\displaystyle D^{n+1}y={1 \over x^{n+1}}({\mathfrak {D}}-n){\mathfrak {D}}({\mathfrak {D}}-1)...({\mathfrak {D}}-(n-1))y}
D
n
+
1
y
=
1
x
n
+
1
D
(
D
−
1
)
(
D
−
2
)
.
.
.
(
D
−
n
)
y
{\displaystyle D^{n+1}y={1 \over x^{n+1}}{\mathfrak {D}}({\mathfrak {D}}-1)({\mathfrak {D}}-2)...({\mathfrak {D}}-n)y}
x
n
+
1
D
n
+
1
y
=
D
(
D
−
1
)
(
D
−
2
)
.
.
.
(
D
−
n
)
y
{\displaystyle x^{n+1}D^{n+1}y={\mathfrak {D}}({\mathfrak {D}}-1)({\mathfrak {D}}-2)...({\mathfrak {D}}-n)y}
Thus the inductive step has been proven; the generalization is true:
x
n
D
n
y
=
D
(
D
−
1
)
(
D
−
2
)
.
.
.
(
D
−
(
n
−
1
)
)
y
{\displaystyle x^{n}D^{n}y={\mathfrak {D}}({\mathfrak {D}}-1)({\mathfrak {D}}-2)...({\mathfrak {D}}-(n-1))y}
This rule can be used to convert a higher-order E.C.e. into a H.O.L.D.E. with constant coefficients whose independent variable is z . Once the H.O.L.D.E.w.c.c. is solved, replace z with
ln
x
{\displaystyle \ln x}
.