Home
Random
Log in
Settings
Donate
About Wikiversity
Disclaimers
Search
Euler's number/Interest estimates/Exercise
Language
Watch
Edit
Show the following estimates.
a)
(
n
k
)
⋅
1
n
k
≤
1
k
!
,
{\displaystyle {}{\binom {n}{k}}\cdot {\frac {1}{n^{k}}}\leq {\frac {1}{k!}}\,,}
b)
(
1
+
1
n
)
n
≤
∑
k
=
0
n
1
k
!
.
{\displaystyle {}{\left(1+{\frac {1}{n}}\right)}^{n}\leq \sum _{k=0}^{n}{\frac {1}{k!}}\,.}
Create a solution