Energy Methods/Variational Principles
edit
Examples:
Principle of Virtual Work.
Principle of Minimum Potential Energy.
Principle of Minimum Complementary Energy.
Hu-Washizu Variational Principle.
Hellinger-Reissner Variational Principle.
Why ?
Powerful way of approaching problems in linear elasticity.
Can be used to derive the governing equations and boundary conditions for special classes of problems.
Used as the basis of approximate solutions of elasticity problem, e.g., finite element method.
Can be used to obtain rigorous bounds on the stiffness of elastic structures/solids.
Some definitions from Variational Calculus
edit
A functional is basically a function of some other functions.
Let
u
(
x
)
{\displaystyle u(x)}
be the displacement. Then the local strain energy density
U
[
u
(
x
)
]
{\displaystyle U[u(x)]}
is a functional .
The Minimization Problem
edit
Find
u
(
x
)
{\displaystyle u(x)}
such that
U
[
u
(
x
)
]
=
∫
x
0
x
1
F
(
x
,
u
,
u
′
)
d
x
{\displaystyle U[u(x)]=\int _{x_{0}}^{x_{1}}F(x,u,u')dx}
is a minimum.
Suppose
U
[
u
(
x
)
+
δ
u
(
x
)
]
≥
U
[
u
(
x
)
]
∀
|
δ
u
(
x
)
|
<
h
and
x
∈
(
x
0
,
x
1
)
{\displaystyle U[u(x)+\delta u(x)]\geq U[u(x)]~\forall ~|\delta u(x)|<h~{\text{and}}~x\in (x_{0},x_{1})}
and equality holds only when
δ
u
(
x
)
=
0
{\displaystyle \delta u(x)=0\,}
. Then
δ
u
{\displaystyle \delta u\,}
is the
variation of
u
{\displaystyle u\,}
.
Necessary Condition : Euler Equation
edit
A necessary condition that
u
(
x
)
{\displaystyle u(x)}
minimizes
U
[
u
(
x
)
]
{\displaystyle U[u(x)]}
is that the
Euler equation
∂
F
∂
u
−
d
d
x
(
∂
F
∂
u
′
)
=
0
{\displaystyle {\frac {\partial F}{\partial u}}-{\frac {d}{dx}}\left({\frac {\partial F}{\partial u^{'}}}\right)=0}
is satisfied and
∂
F
∂
u
′
|
x
0
=
0
or,
η
(
x
0
)
=
0
{\displaystyle \left.{\frac {\partial F}{\partial u^{'}}}\right|_{x_{0}}=0~~{\text{or,}}~~\eta (x_{0})=0}
and,
∂
F
∂
u
′
|
x
1
=
0
or,
η
(
x
1
)
=
0
{\displaystyle \left.{\frac {\partial F}{\partial u^{'}}}\right|_{x_{1}}=0~~{\text{or,}}~~\eta (x_{1})=0}
where
δ
u
(
x
)
=
ϵ
η
(
x
)
{\displaystyle \delta u(x)=\epsilon \eta (x)}
and
ϵ
{\displaystyle \epsilon }
is small and
η
(
x
)
{\displaystyle \eta (x)}
is arbitrary.
The imposed BCs are the conditions
η
(
x
0
)
=
0
and
η
(
x
1
)
=
0
{\displaystyle \eta (x_{0})=0~{\text{and}}~\eta (x_{1})=0}
These are automatically satisfied.
The natural BCs are the conditions
∂
∂
u
′
F
|
x
0
=
0
and
∂
∂
u
′
F
|
x
1
=
0
{\displaystyle \left.{\frac {\partial }{\partial u'}}{F}\right|_{x_{0}}=0~{\text{and}}\left.{\frac {\partial }{\partial u'}}{F}\right|_{x_{1}}=0}
Stationary Functions
edit
Any
u
(
x
)
{\displaystyle u(x)}
that satisfies the necessary conditions make the functional
U
[
u
(
x
)
]
{\displaystyle U[u(x)]}
stationary and is said to be a stationary function
of the functional.
Suppose that
U
{\displaystyle U}
is a functional with
U
[
u
(
x
)
]
=
∫
x
0
x
1
F
(
x
,
u
,
u
′
)
d
x
{\displaystyle U[u(x)]=\int _{x_{0}}^{x_{1}}F(x,u,u')dx}
Suppose that
δ
u
{\displaystyle \delta u}
is a small variation of
u
{\displaystyle u}
that satisfies
|
δ
u
(
x
)
|
≪
1
;
|
δ
u
′
(
x
)
|
≪
1
∀
x
∈
(
x
0
,
x
1
)
{\displaystyle \left|\delta u(x)\right|\ll 1~;~~\left|\delta u'(x)\right|\ll 1~\forall ~x\in (x_{0},x_{1})}
Then the variation of
F
{\displaystyle F}
is
δ
F
=
F
(
x
,
u
+
δ
u
,
u
′
+
δ
u
′
)
−
F
(
x
,
u
,
u
′
)
{\displaystyle \delta F=F(x,u+\delta u,u'+\delta u')-F(x,u,u')\,}
or,
δ
F
=
∂
F
∂
u
δ
u
+
∂
F
∂
u
′
δ
u
′
{\displaystyle \delta F={\frac {\partial F}{\partial u}}~\delta u+{\frac {\partial F}{\partial u^{'}}}~\delta u'}
The variation of
U
{\displaystyle U}
is
δ
U
=
∫
x
0
x
1
δ
F
d
x
{\displaystyle \delta U=\int _{x_{0}}^{x_{1}}\delta Fdx}
or,
δ
U
=
∂
F
∂
u
′
δ
u
|
x
0
x
1
+
∫
x
0
x
1
[
∂
F
∂
u
δ
u
−
d
d
x
(
∂
F
∂
u
′
)
δ
u
]
d
x
{\displaystyle \delta U=\left.{\frac {\partial F}{\partial u'}}~\delta u\right|_{x_{0}}^{x_{1}}+\int _{x_{0}}^{x_{1}}\left[{\frac {\partial F}{\partial u}}~\delta u-{\frac {d}{dx}}\left({\frac {\partial F}{\partial u'}}\right)\delta u\right]dx}
Assuming that
δ
U
=
0
{\displaystyle \delta U=0\,}
is a necessary condition to minimize
U
[
u
(
x
)
]
{\displaystyle U[u(x)]\,}
, we get the same necessary conditions as before.
Lagrange Multipliers
edit
If there are additional constraints on minimization, we usually use
Lagrange Multipliers .
Suppose the additional constraint is that
x
+
u
+
u
′
=
C
{\displaystyle x+u+u'=C}
.
Then, we define a function,
F
~
(
x
,
u
,
u
′
,
λ
)
=
F
(
x
,
u
,
u
′
)
−
λ
[
x
+
u
+
u
′
−
C
]
{\displaystyle {\tilde {F}}(x,u,u',\lambda )=F(x,u,u')-\lambda \left[x+u+u'-C\right]}
where
λ
{\displaystyle \lambda }
is the Lagrange multiplier.
Then,
∂
F
~
∂
λ
=
0
{\displaystyle {\frac {\partial {\tilde {F}}}{\partial \lambda }}=0}
Then, the values that minimize the function subject to the
given constraint are given by the equations
∂
F
~
∂
λ
=
0
;
∂
F
~
∂
u
=
0
;
∂
F
~
∂
u
′
=
0
{\displaystyle {\frac {\partial {\tilde {F}}}{\partial \lambda }}=0~~;~~{\frac {\partial {\tilde {F}}}{\partial u}}=0~~;~~{\frac {\partial {\tilde {F}}}{\partial u'}}=0}
More on Strain Energy Density
edit
Recall that the strain energy density is defined as
U
(
ε
)
=
∫
0
ε
σ
:
d
ε
{\displaystyle U({\boldsymbol {\varepsilon }})=\int _{0}^{\varepsilon }{\boldsymbol {\sigma }}:d{\boldsymbol {\varepsilon }}}
If the strain energy density is path independent, then it acts
as a potential for stress, i.e.,
σ
i
j
=
∂
U
(
ε
)
∂
ε
i
j
{\displaystyle \sigma _{ij}={\frac {\partial U(\varepsilon )}{\partial \varepsilon _{ij}}}}
For adiabatic processes ,
U
{\displaystyle U}
is equal to the change in internal energy per unit volume.
For isothermal processes ,
U
{\displaystyle U}
is equal to the Helmholtz free energy per unit volume.
The natural state of a body is defined as the state in which the body is in stable thermal equilibrium with no external loads and zero stress and strain.
When we apply energy methods in linear elasticity, we implicitly assume that a body returns to its natural state after loads are removed. This implies that the Gibbs condition is satisfied :
U
(
ε
)
≥
0
with
U
(
ε
)
=
0
iff
ε
=
0
{\displaystyle U({\boldsymbol {\varepsilon }})\geq 0~~{\text{with}}~~U({\boldsymbol {\varepsilon }})=0~~{\text{iff}}~~{\boldsymbol {\varepsilon }}=0}
The Principle of Virtual Work
edit
This principle is used in the derivation of several minimization principles
and states that:
If
σ
i
j
(
1
)
{\displaystyle \sigma _{ij}^{(1)}}
is a state of stress satisfying equilibrium
∇
∙
σ
(
1
)
+
f
(
1
)
=
0
on
B
{\displaystyle {\boldsymbol {\nabla }}\bullet {{\boldsymbol {\sigma }}^{(1)}}+\mathbf {f} ^{(1)}=0~~{\text{on}}~B}
and the traction boundary condition
n
^
∙
σ
(
1
)
=
t
(
1
)
on
∂
B
{\displaystyle {\widehat {\mathbf {n} }}{}\bullet {\boldsymbol {\sigma }}^{(1)}=\mathbf {t} ^{(1)}~~{\text{on}}~\partial B}
Also, if
u
(
2
)
{\displaystyle u^{(2)}}
is a displacement field on
B
{\displaystyle B}
such that the strain
field
ε
i
j
(
2
)
{\displaystyle \varepsilon _{ij}^{(2)}}
is given by
ε
(
2
)
=
1
2
(
∇
u
(
2
)
+
(
∇
u
(
2
)
)
T
)
{\displaystyle \varepsilon ^{(2)}={\frac {1}{2}}\left({\boldsymbol {\nabla }}u^{(2)}+({\boldsymbol {\nabla }}u^{(2)})^{T}\right)}
then
∫
B
f
i
(
1
)
u
i
(
2
)
d
V
+
∫
∂
B
t
i
(
1
)
u
i
(
2
)
d
A
=
∫
B
σ
i
j
(
1
)
ε
i
j
(
2
)
d
V
{\displaystyle \int _{B}f_{i}^{(1)}u_{i}^{(2)}~dV+\int _{\partial B}t_{i}^{(1)}u_{i}^{(2)}~dA=\int _{B}\sigma _{ij}^{(1)}\varepsilon _{ij}^{(2)}~dV}
The converse also holds - and is usually more interesting because it
gives us a different way of thinking about equilibrium.
If there are jump discontinuities in a body, then what does equilibrium
imply ?
Suppose that
σ
{\displaystyle {\boldsymbol {\sigma }}}
has a jump discontinuity across a body
along the surface
S
{\displaystyle S}
with normal
m
^
{\displaystyle {\hat {\mathbf {m} }}}
because the materials
on the two sides are different.
We define the equilibrium state to be one that satisfies the principle
of virtual work for all displacement fields.
Now, if the spin tensor is zero, then
σ
i
j
(
1
)
ε
i
j
(
2
)
=
(
σ
i
j
(
1
)
u
i
(
2
)
)
,
j
−
σ
i
j
,
j
(
1
)
u
i
(
2
)
{\displaystyle \sigma _{ij}^{(1)}\varepsilon _{ij}^{(2)}=(\sigma _{ij}^{(1)}u_{i}^{(2)})_{,j}-\sigma _{ij,j}^{(1)}u_{i}^{(2)}}
If we use the above, and apply the divergence theorem to the virtual
work equation we get
∫
B
(
σ
j
i
,
j
(
1
)
+
f
i
(
1
)
)
u
i
(
2
)
d
V
+
∫
∂
B
(
t
i
(
1
)
−
σ
i
j
(
1
)
n
j
)
u
i
(
2
)
d
A
=
0
{\displaystyle \int _{B}\left(\sigma _{ji,j}^{(1)}+f_{i}^{(1)}\right)u_{i}^{(2)}~dV+\int _{\partial B}\left(t_{i}^{(1)}-\sigma _{ij}^{(1)}n_{j}\right)u_{i}^{(2)}~dA=0}
For the stress jump to satisfy this equation, we must have
∫
B
(
σ
j
i
,
j
(
1
)
+
f
i
(
1
)
)
u
i
(
2
)
d
V
+
∫
∂
B
(
t
i
(
1
)
−
σ
i
j
(
1
)
n
j
)
u
i
(
2
)
d
A
+
∫
S
(
σ
i
j
+
m
j
+
−
σ
i
j
−
m
j
−
)
u
i
(
2
)
d
S
=
0
{\displaystyle \int _{B}\left(\sigma _{ji,j}^{(1)}+f_{i}^{(1)}\right)u_{i}^{(2)}~dV+\int _{\partial B}\left(t_{i}^{(1)}-\sigma _{ij}^{(1)}n_{j}\right)u_{i}^{(2)}~dA+\int _{S}(\sigma _{ij}^{+}m_{j}^{+}-\sigma _{ij}^{-}m_{j}^{-})u_{i}^{(2)}dS=0}
Hence, equilibrium is satisfied when
σ
i
j
+
m
j
+
−
σ
i
j
−
m
j
−
=
0
on
S
{\displaystyle \sigma _{ij}^{+}m_{j}^{+}-\sigma _{ij}^{-}m_{j}^{-}=0~~{\text{on}}~~S}
which means that even though a jump can exist in the stresses, the
tractions have to be continuous across the discontinuity.
Energy as a Functional
edit
The work done by external forces on a body
B
{\displaystyle B}
can be represented
as a functional
W
[
u
]
=
∫
∂
B
(
∫
0
u
t
∙
d
u
)
d
A
+
∫
B
(
∫
0
u
f
∙
d
u
)
d
V
{\displaystyle W[\mathbf {u} ]=\int _{\partial B}\left(\int _{0}^{\mathbf {u} }\mathbf {t} \bullet d\mathbf {u} \right)dA+\int _{B}\left(\int _{0}^{\mathbf {u} }\mathbf {f} \bullet d\mathbf {u} \right)dV}
Taking the variation of
W
{\displaystyle W}
, we get
δ
W
=
∫
∂
B
∂
∂
u
[
(
∫
0
u
t
∙
d
u
)
]
d
A
+
∫
B
∂
∂
u
[
(
∫
0
u
f
∙
d
u
)
]
d
V
{\displaystyle \delta W=\int _{\partial B}{\frac {\partial }{\partial \mathbf {u} }}\left[\left(\int _{0}^{\mathbf {u} }\mathbf {t} \bullet d\mathbf {u} \right)\right]dA+\int _{B}{\frac {\partial }{\partial \mathbf {u} }}\left[\left(\int _{0}^{\mathbf {u} }\mathbf {f} \bullet d\mathbf {u} \right)\right]dV}
In index notation,
δ
W
=
∫
∂
B
∂
∂
u
j
[
(
∫
0
u
t
i
d
u
i
)
]
δ
u
j
d
A
+
∫
B
∂
∂
u
j
[
(
∫
0
u
f
i
d
u
i
)
]
δ
u
j
d
V
{\displaystyle \delta W=\int _{\partial B}{\frac {\partial }{\partial u_{j}}}\left[\left(\int _{0}^{\mathbf {u} }t_{i}~du_{i}\right)\right]\delta u_{j}~dA+\int _{B}{\frac {\partial }{\partial u_{j}}}\left[\left(\int _{0}^{\mathbf {u} }f_{i}~du_{i}\right)\right]\delta u_{j}~dV}
Noting that the external forces and body forces are not functions
of
u
{\displaystyle \mathbf {u} }
, the above equation reduces to
δ
W
=
∫
∂
B
t
j
δ
u
j
d
A
+
∫
B
f
j
δ
u
j
d
V
{\displaystyle \delta W=\int _{\partial B}t_{j}~\delta u_{j}~dA+\int _{B}f_{j}~\delta u_{j}~dV}
The above expression is called the external virtual work.
If we apply the principle of virtual work, with
t
=
t
(
1
)
;
f
=
f
(
1
)
;
σ
=
σ
(
1
)
;
δ
u
=
u
(
2
)
;
δ
ε
=
ε
(
2
)
{\displaystyle \mathbf {t} =\mathbf {t} ^{(1)}~;~~\mathbf {f} =\mathbf {f} ^{(1)}~;~~{\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{(1)}~;~~\delta \mathbf {u} =\mathbf {u} ^{(2)}~;~~\delta {\boldsymbol {\varepsilon }}={\boldsymbol {\varepsilon }}^{(2)}}
we get
δ
W
=
∫
B
σ
:
δ
ε
d
V
{\displaystyle \delta W=\int _{B}{\boldsymbol {\sigma }}:\delta {\boldsymbol {\varepsilon }}~dV}
or,
δ
W
=
∫
B
∂
U
(
ε
)
∂
ε
i
j
δ
ε
i
j
d
V
{\displaystyle \delta W=\int _{B}{\frac {\partial U({\boldsymbol {\varepsilon }})}{\partial \varepsilon _{ij}}}\delta \varepsilon _{ij}~dV}
This is the expression for the internal virtual work.
Thus, another form of the principle of virtual work is
∫
B
∂
U
(
ε
)
∂
ε
i
j
δ
ε
i
j
d
V
=
∫
∂
B
t
j
δ
u
j
d
A
+
∫
B
f
j
δ
u
j
d
V
{\displaystyle \int _{B}{\frac {\partial U({\boldsymbol {\varepsilon }})}{\partial \varepsilon _{ij}}}\delta \varepsilon _{ij}~dV=\int _{\partial B}t_{j}~\delta u_{j}~dA+\int _{B}f_{j}~\delta u_{j}~dV}
Doing the reverse operation, it can be shown that
W
[
ε
(
x
)
]
=
∫
R
U
(
ε
)
d
V
{\displaystyle W[{\boldsymbol {\varepsilon }}(\mathbf {x} )]=\int _{R}U({\boldsymbol {\varepsilon }})~dV}
which relates the strain energy density (
U
{\displaystyle U}
) to the functional
W
{\displaystyle W}
that represents the work done by external forces.
Energy Minimization Principles
edit
Developed and explored by Green (1839), Haughton(1849), Kirchhoff (1850),
Love (1906), Trefftz (1928) and others.
The Principle of Stationary Potential Energy
edit
This principle states that:
Among all possible kinematically admissible displacement fields
the potential energy functional is rendered stationary
by only those that are actual displacement fields.
The Principle of Minimum Potential Energy
edit
This principle states that
If the prescribed traction and body force fields are independent of the deformation
then the actual displacement field makes the potential energy functional an absolute minimum .
Kinematically Admissible Displacement Fields
edit
Consider a body
B
{\displaystyle B}
with a boundary
∂
B
{\displaystyle \partial B}
with an applied
body force field
f
~
{\displaystyle {\tilde {\mathbf {f} }}}
.
Suppose that
displacement BCs
u
=
u
~
{\displaystyle \mathbf {u} ={\tilde {\mathbf {u} }}}
are prescribed on the part of
the boundary
∂
B
u
{\displaystyle \partial B^{u}}
.
Suppose also that traction BCs
n
^
∙
σ
=
t
~
{\displaystyle {\widehat {\mathbf {n} }}{}\bullet {\boldsymbol {\sigma }}={\tilde {\mathbf {t} }}}
are applied on the portion of the
boundary
∂
B
t
{\displaystyle \partial B^{t}}
.
A displacement field
(
v
)
{\displaystyle (\mathbf {v} )}
is kinematically admissible if
v
{\displaystyle \mathbf {v} }
satisfies the displacement boundary conditions
v
=
u
~
{\displaystyle \mathbf {v} ={\tilde {\mathbf {u} }}}
on
∂
B
u
{\displaystyle \partial B^{u}}
.
v
{\displaystyle \mathbf {v} }
is continuously differentiable, i.e.,
v
∈
C
3
(
R
)
{\displaystyle \mathbf {v} \in C^{3}(\mathbb {R} )}
and
|
∇
v
|
<<
1
{\displaystyle |{\boldsymbol {\nabla }}{\mathbf {v} }|<<1}
.
Potential Energy Functional
edit
The potential energy functional associated with the
kinematically admissible displacement field
v
{\displaystyle \mathbf {v} }
is defined as
Π
[
v
,
ε
,
σ
]
=
∫
B
U
(
ε
)
d
V
−
∫
B
f
~
∙
v
d
V
−
∫
∂
B
t
t
~
∙
v
d
A
{\displaystyle \Pi [\mathbf {v} ,{\boldsymbol {\varepsilon }},{\boldsymbol {\sigma }}]=\int _{B}U({\boldsymbol {\varepsilon }})~dV-\int _{B}{\tilde {\mathbf {f} }}\bullet \mathbf {v} ~dV-\int _{\partial B^{t}}{\tilde {\mathbf {t} }}\bullet \mathbf {v} ~dA}
or,
Π
[
v
]
=
1
2
∫
B
∇
v
:
C
:
∇
v
d
V
−
∫
B
f
~
∙
v
d
V
−
∫
∂
B
t
t
~
∙
v
d
A
{\displaystyle \Pi [\mathbf {v} ]={\frac {1}{2}}\int _{B}{\boldsymbol {\nabla }}{\mathbf {v} }:\mathbf {C} :{\boldsymbol {\nabla }}{\mathbf {v} }~dV-\int _{B}{\tilde {\mathbf {f} }}\bullet \mathbf {v} ~dV-\int _{\partial B^{t}}{\tilde {\mathbf {t} }}\bullet \mathbf {v} ~dA}
In index notation,
Π
[
v
]
=
1
2
∫
B
C
i
j
k
l
v
k
,
l
v
i
,
j
d
V
−
∫
B
f
~
i
v
i
d
V
−
∫
∂
B
t
t
~
i
v
i
d
A
{\displaystyle \Pi [\mathbf {v} ]={\frac {1}{2}}\int _{B}C_{ijkl}~v_{k,l}~v_{i,j}~dV-\int _{B}{\tilde {f}}_{i}~v_{i}~dV-\int _{\partial B^{t}}{\tilde {t}}_{i}~v_{i}~dA}
Stationary Points and Minimum of the Potential Energy Functional
edit
What do we mean when we say that we "render the potential energy
functional stationary" or "minimum"? Note that the potential energy
is a functional of a vector field.
Suppose that the actual displacement field (one that satisfies equilibrium,
compatibility and the boundary conditions) is
u
{\displaystyle \mathbf {u} }
.
Let
v
{\displaystyle \mathbf {v} }
be a kinematically admissible variation of
u
{\displaystyle \mathbf {u} }
, i.e.,
v
=
u
+
k
δ
u
{\displaystyle \mathbf {v} =\mathbf {u} +k~\delta \mathbf {u} }
where
k
{\displaystyle k}
is a constant.
Then
δ
u
{\displaystyle \delta \mathbf {u} }
must be a displacement field that is continuously
differentiable and satisfies the boundary conditions
δ
u
=
0
on
∂
B
u
{\displaystyle \delta \mathbf {u} =0~~{\text{on}}~~\partial B^{u}}
The potential energy functional for
v
{\displaystyle \mathbf {v} }
is
Π
[
u
+
k
δ
u
]
=
1
2
∫
B
∇
(
u
+
k
δ
u
)
:
C
:
∇
(
u
+
k
δ
u
)
d
V
−
∫
B
f
~
∙
(
u
+
k
δ
u
)
d
V
−
∫
∂
B
t
t
~
∙
(
u
+
k
δ
u
)
d
A
{\displaystyle {\begin{aligned}\Pi [\mathbf {u} +k~\delta \mathbf {u} ]=&{\frac {1}{2}}\int _{B}{\boldsymbol {\nabla }}{(\mathbf {u} +k~\delta \mathbf {u} )}:\mathbf {C} :{\boldsymbol {\nabla }}{(\mathbf {u} +k~\delta \mathbf {u} )}~dV\\&-\int _{B}{\tilde {\mathbf {f} }}\bullet (\mathbf {u} +k~\delta \mathbf {u} )~dV-\int _{\partial B^{t}}{\tilde {\mathbf {t} }}\bullet (\mathbf {u} +k~\delta \mathbf {u} )~dA\end{aligned}}}
In index notation,
Π
[
u
+
k
δ
u
]
=
1
2
∫
B
C
i
j
k
l
(
u
i
,
j
+
k
δ
u
i
,
j
)
(
u
k
,
l
+
k
δ
u
k
,
l
)
d
V
−
∫
B
f
~
i
(
u
i
+
k
δ
u
i
)
d
V
−
∫
∂
B
t
t
~
i
(
u
i
+
k
δ
u
i
)
d
A
{\displaystyle {\begin{aligned}\Pi [\mathbf {u} +k~\delta \mathbf {u} ]=&{\frac {1}{2}}\int _{B}C_{ijkl}(u_{i,j}+k~\delta u_{i,j})(u_{k,l}+k~\delta u_{k,l})~dV\\&-\int _{B}{\tilde {f}}_{i}(u_{i}+k~\delta u_{i})~dV-\int _{\partial B^{t}}{\tilde {t}}_{i}(u_{i}+k~\delta u_{i})~dA\end{aligned}}}
Expanding and rearranging,
Π
[
u
+
k
δ
u
]
=
1
2
∫
B
C
i
j
k
l
u
i
,
j
u
k
,
l
d
V
−
∫
B
f
~
i
u
i
d
V
−
∫
∂
B
t
t
~
i
u
i
d
A
+
k
[
1
2
∫
B
C
i
j
k
l
u
i
,
j
δ
u
k
,
l
d
V
+
1
2
∫
B
C
i
j
k
l
δ
u
i
,
j
u
k
,
l
d
V
]
(1)
−
k
[
∫
B
f
~
i
δ
u
i
d
V
+
∫
∂
B
t
t
~
i
δ
u
i
d
A
]
+
k
2
2
∫
B
C
i
j
k
l
δ
u
i
,
j
δ
u
k
,
l
d
V
{\displaystyle {\begin{aligned}\Pi [\mathbf {u} +k~\delta \mathbf {u} ]=&{\frac {1}{2}}\int _{B}C_{ijkl}~u_{i,j}~u_{k,l}~dV-\int _{B}{\tilde {f}}_{i}~u_{i}~dV-\int _{\partial B^{t}}{\tilde {t}}_{i}~u_{i}~dA\\&+k\left[{\frac {1}{2}}\int _{B}C_{ijkl}~u_{i,j}~\delta u_{k,l}~dV+{\frac {1}{2}}\int _{B}C_{ijkl}~\delta u_{i,j}~u_{k,l}~dV\right]{\text{(1)}}\qquad \\&-k\left[\int _{B}{\tilde {f}}_{i}~\delta u_{i}~dV+\int _{\partial B^{t}}{\tilde {t}}_{i}~\delta u_{i}~dA\right]\\&+{\frac {k^{2}}{2}}\int _{B}C_{ijkl}~\delta u_{i,j}~\delta u_{k,l}~dV\end{aligned}}}
Using the symmetry of the stiffness tensor, we can simplify the above
expression and write it it terms of variations of
Π
{\displaystyle \Pi }
. Thus,
Π
[
u
+
k
δ
u
]
=
Π
[
u
]
+
k
δ
Π
[
u
,
δ
u
]
+
1
2
k
2
δ
2
Π
(
u
,
δ
u
)
{\displaystyle \Pi [\mathbf {u} +k~\delta \mathbf {u} ]=\Pi [\mathbf {u} ]+k~\delta \Pi [\mathbf {u} ,\delta \mathbf {u} ]+{\frac {1}{2}}k^{2}~\delta ^{2}\Pi (\mathbf {u} ,\delta \mathbf {u} )}
You can check that the first and second variations of
Π
{\displaystyle \Pi }
turn out to
be equal to the expanded terms in equation (1).
If
δ
Π
(
u
,
δ
u
)
=
0
{\displaystyle \delta \Pi (\mathbf {u} ,\delta \mathbf {u} )=0}
for all admissible variations
δ
u
{\displaystyle \delta \mathbf {u} }
, then
u
{\displaystyle \mathbf {u} }
is a { stationary
point} of the functional
Π
{\displaystyle \Pi }
.
If
δ
2
Π
(
u
,
δ
u
)
>
0
{\displaystyle \delta ^{2}\Pi (\mathbf {u} ,\delta \mathbf {u} )>0}
for all admissible variations
δ
u
{\displaystyle \delta \mathbf {u} }
, then
u
{\displaystyle \mathbf {u} }
is makes the
functional
Π
{\displaystyle \Pi }
a minimum .
Observations on Uniqueness and Existence of Solutions
edit
The potential energy functional is a global minimum if and only if the displacement field satisfies traction BCs, equilibrium and the displacement BCs.
Thus, if the potential energy functional actually has a global mininum, then a solution exists and must be unique.
Displacement boundary value problems do not face the problem of rigid body motions. Therefore, a global minimum always exists for such problems and is unique.
Traction boundary value problems may not have unique solutions, nor might solutions always exist unless the external loads are in static equilibrium.
Example: Approximate Solutions of Torsion Problems
edit
Suppose that we have a cylindrical body of length
L
{\displaystyle L}
and an arbitrary cross-section that is subject to equal and opposite torques at the two ends. The displacement field is given by
u
1
=
−
α
x
2
x
3
;
u
2
=
α
x
1
x
3
;
u
3
=
α
ψ
(
x
1
,
x
2
)
{\displaystyle u_{1}=-\alpha x_{2}x_{3}~;~~u_{2}=\alpha x_{1}x_{3}~;~~u_{3}=\alpha \psi (x_{1},x_{2})}
The traction-free boundary conditions on the lateral surfaces can be
given as
n
^
∙
σ
=
0
{\displaystyle {\widehat {\mathbf {n} }}{}\bullet {\boldsymbol {\sigma }}=0}
The torque BC at the ends can be replaced with displacement BCs
on
x
3
=
0
;
u
1
=
u
2
=
0
,
u
3
=
α
ψ
(
x
1
,
x
2
)
{\displaystyle {\text{on}}~x_{3}=0~;~~~~~~u_{1}=u_{2}=0~,~~u_{3}=\alpha \psi (x_{1},x_{2})}
and
on
x
3
=
L
;
u
1
=
−
α
L
x
2
,
u
2
=
α
L
x
1
,
u
3
=
α
ψ
(
x
1
,
x
2
)
{\displaystyle {\text{on}}~x_{3}=L~;~~~~~~u_{1}=-\alpha Lx_{2}~,~~u_{2}=\alpha Lx_{1}~,~~u_{3}=\alpha \psi (x_{1},x_{2})}
Thus, we change the problem from a purely traction boundary value
problem to one in which the twist per unit length (
α
{\displaystyle \alpha }
) is prescribed instead of the applied torque (
T
{\displaystyle T}
).
The modified problem is one with zero body force and zero tractions.
Therefore, the potential energy functional reduces to
Π
[
v
,
ε
,
σ
]
=
∫
B
U
(
ε
)
d
V
{\displaystyle \Pi [\mathbf {v} ,{\boldsymbol {\varepsilon }},{\boldsymbol {\sigma }}]=\int _{B}U({\boldsymbol {\varepsilon }})~dV}
The stresses and strains for the torsion problem are given by
σ
13
=
μ
α
(
ψ
,
1
−
x
2
)
σ
23
=
μ
α
(
ψ
,
2
+
x
1
)
ε
13
=
α
2
(
ψ
,
1
−
x
2
)
ε
23
=
α
2
(
ψ
,
2
+
x
1
)
{\displaystyle {\begin{aligned}\sigma _{13}=\mu \alpha (\psi _{,1}-x_{2})&&\sigma _{23}=\mu \alpha (\psi _{,2}+x_{1})\\\varepsilon _{13}={\frac {\alpha }{2}}(\psi _{,1}-x_{2})&&\varepsilon _{23}={\frac {\alpha }{2}}(\psi _{,2}+x_{1})\end{aligned}}}
Therefore, the internal energy is
U
(
ε
)
=
1
2
σ
i
j
ε
i
j
=
1
2
μ
α
2
[
(
ψ
,
1
−
x
2
)
2
+
(
ψ
,
2
+
x
1
)
2
]
{\displaystyle U({\boldsymbol {\varepsilon }})={\frac {1}{2}}\sigma _{ij}\varepsilon _{ij}={\frac {1}{2}}\mu \alpha ^{2}\left[(\psi _{,1}-x_{2})^{2}+(\psi _{,2}+x_{1})^{2}\right]}
The potential energy per unit length (
Π
¯
{\displaystyle {\bar {\Pi }}}
) is
Π
¯
[
ψ
(
x
1
,
x
2
)
]
=
1
2
μ
α
2
∫
S
[
(
ψ
,
1
−
x
2
)
2
+
(
ψ
,
2
+
x
1
)
2
]
d
A
{\displaystyle {\bar {\Pi }}[\psi (x_{1},x_{2})]={\frac {1}{2}}\mu \alpha ^{2}\int _{\mathcal {S}}\left[(\psi _{,1}-x_{2})^{2}+(\psi _{,2}+x_{1})^{2}\right]dA}
According to the principle of minimum potential energy, the actual
warping function is the one that makes
Π
¯
{\displaystyle {\bar {\Pi }}}
an absolute minimum.
Suppose we are given a warping function of the form
ψ
=
A
x
1
2
+
B
x
1
x
2
+
C
x
2
2
{\displaystyle \psi =Ax_{1}^{2}+Bx_{1}x_{2}+Cx_{2}^{2}}
Then, the potential energy per unit length is
Π
¯
[
ψ
(
x
1
,
x
2
)
]
=
1
2
μ
α
2
[
∫
S
[
4
A
2
+
(
B
+
1
)
2
]
x
1
2
d
A
+
∫
S
[
4
C
2
+
(
B
−
1
)
2
]
x
2
2
d
A
+
∫
S
4
[
A
(
B
−
1
)
+
C
(
B
+
1
)
]
x
1
x
2
d
A
]
{\displaystyle {\begin{aligned}{\bar {\Pi }}[\psi (x_{1},x_{2})]={\frac {1}{2}}\mu \alpha ^{2}&\left[\int _{\mathcal {S}}\left[4A^{2}+(B+1)^{2}\right]x_{1}^{2}~dA+\int _{\mathcal {S}}\left[4C^{2}+(B-1)^{2}\right]x_{2}^{2}~dA+\right.\\&\left.\int _{\mathcal {S}}4\left[A(B-1)+C(B+1)\right]x_{1}~x_{2}~dA\right]\end{aligned}}}
If
x
1
{\displaystyle x_{1}}
and
x
2
{\displaystyle x_{2}}
are the principal axes of inertia, then we have
I
1
=
∫
S
x
1
2
d
A
;
I
2
=
∫
S
x
2
2
d
A
;
I
12
=
∫
S
x
1
x
2
d
A
=
0
{\displaystyle I_{1}=\int _{\mathcal {S}}x_{1}^{2}~dA~;~~I_{2}=\int _{\mathcal {S}}x_{2}^{2}~dA~;~~I_{12}=\int _{\mathcal {S}}x_{1}~x_{2}~dA=0}
Hence,
Π
¯
[
ψ
(
x
1
,
x
2
)
]
=
1
2
μ
α
2
[
[
4
A
2
+
(
B
+
1
)
2
]
I
1
+
[
4
C
2
+
(
B
−
1
)
2
]
I
2
]
{\displaystyle {\begin{aligned}{\bar {\Pi }}[\psi (x_{1},x_{2})]=&{\frac {1}{2}}\mu \alpha ^{2}\left[\left[4A^{2}+(B+1)^{2}\right]I_{1}+\left[4C^{2}+(B-1)^{2}\right]I_{2}\right]\end{aligned}}}
The stationary points of the potential energy functional are given by
∂
Π
¯
∂
A
=
4
μ
α
2
I
2
A
=
0
∂
Π
¯
∂
B
=
μ
α
2
[
(
B
+
1
)
I
2
+
(
B
−
1
)
I
1
]
=
0
∂
Π
¯
∂
C
=
4
μ
α
2
I
2
A
=
0
{\displaystyle {\begin{aligned}{\frac {\partial {\bar {\Pi }}}{\partial A}}&=4\mu \alpha ^{2}~I_{2}~A=0\\{\frac {\partial {\bar {\Pi }}}{\partial B}}&=\mu \alpha ^{2}\left[(B+1)I_{2}+(B-1)I_{1}\right]=0\\{\frac {\partial {\bar {\Pi }}}{\partial C}}&=4\mu \alpha ^{2}~I_{2}~A=0\end{aligned}}}
Thus, we have,
A
=
0
;
B
=
I
1
−
I
2
I
1
+
I
2
;
C
=
0
{\displaystyle A=0~;~~B={\frac {I_{1}-I_{2}}{I_{1}+I_{2}}}~;~~C=0\,}
Thus the best approximation to the warping function is
ψ
=
I
1
−
I
2
I
1
+
I
2
x
1
x
2
{\displaystyle \psi ={\frac {I_{1}-I_{2}}{I_{1}+I_{2}}}x_{1}x_{2}\,}
The above technique is called the Rayleigh-Ritz method.
An important observation that should be made at this stage is about the approximate nature of the solution.
For cross-sections in which
I
1
=
I
2
{\displaystyle I_{1}=I_{2}\,}
, (e.g., circular or square sections) the best approximation for
ψ
{\displaystyle \psi }
is
ψ
=
0
{\displaystyle \psi =0}
. This gives us the exact result for circular cross-sections.
However, for square cross-sections we have an error of nearly 20%.
Introduction to Elasticity