Let μ {\displaystyle {}\mu } be the minimal polynomial of φ {\displaystyle {}\varphi } . For u ∈ U {\displaystyle {}u\in U} , we have
due to fact. Therefore, μ {\displaystyle {}\mu } annihilates the restricted endomorphism φ | U {\displaystyle {}\varphi {|}_{U}} , and so μ {\displaystyle {}\mu } is a multiple of the minimal polynomial of φ | U {\displaystyle {}\varphi {|}_{U}} .