Derive the transformation rule for second order tensors
(
T
i
j
′
=
l
i
p
l
j
q
T
p
q
{\displaystyle T_{ij}^{'}=l_{ip}l_{jq}T_{pq}}
). Express this relation in matrix notation.
A second-order tensor
T
{\displaystyle \mathbf {T} }
transforms a vector
u
{\displaystyle \mathbf {u} }
into another vector
v
{\displaystyle \mathbf {v} }
.
Thus,
v
=
T
u
=
T
∙
u
{\displaystyle \mathbf {v} =\mathbf {T} \mathbf {u} =\mathbf {T} \bullet \mathbf {u} }
In index and matrix notation,
(1)
v
i
=
T
i
j
u
i
↔
v
p
=
T
p
q
u
q
or,
[
v
]
=
[
T
]
[
u
]
{\displaystyle {\text{(1)}}\qquad v_{i}=T_{ij}u_{i}\leftrightarrow v_{p}=T_{pq}u_{q}~{\text{or,}}~\left[v\right]=\left[T\right]\left[u\right]}
Let us determine the change in the components of
T
{\displaystyle \mathbf {T} }
with change the basis
from (
e
1
,
e
2
,
e
3
{\displaystyle \mathbf {e} _{1},\mathbf {e} _{2},\mathbf {e} _{3}}
) to (
e
1
′
,
e
2
′
,
e
3
′
{\displaystyle \mathbf {e} _{1}^{'},\mathbf {e} _{2}^{'},\mathbf {e} _{3}^{'}}
). The vectors
u
{\displaystyle \mathbf {u} }
and
v
{\displaystyle \mathbf {v} }
, and
the tensor
T
{\displaystyle \mathbf {T} }
remain the same. What changes are the components with respect
to a given basis. Therefore, we can write
(2)
v
i
′
=
T
i
j
′
u
i
′
or,
[
v
]
′
=
[
T
]
′
[
u
]
′
{\displaystyle {\text{(2)}}\qquad v_{i}^{'}=T_{ij}^{'}u_{i}^{'}~{\text{or,}}~\left[v\right]^{'}=\left[T\right]^{'}\left[u\right]^{'}}
Now, using the vector transformation rule,
(3)
v
i
′
=
l
i
p
v
p
;
u
i
′
=
l
i
p
u
p
or,
[
v
]
′
=
[
L
]
[
v
]
;
[
u
]
′
=
[
L
]
[
u
]
v
q
=
l
i
q
v
i
′
;
u
q
=
l
i
q
u
i
′
or,
[
v
]
=
[
L
]
T
[
v
]
′
;
[
u
]
=
[
L
]
T
[
u
]
′
{\displaystyle {\begin{aligned}{\text{(3)}}\qquad v_{i}^{'}&=l_{ip}v_{p}~;~u_{i}^{'}=l_{ip}u_{p}~{\text{or,}}~\left[v\right]^{'}=\left[L\right]\left[v\right]~;\left[u\right]^{'}=\left[L\right]\left[u\right]\\v_{q}&=l_{iq}v_{i}^{'}~;~u_{q}=l_{iq}u_{i}^{'}~{\text{or,}}~\left[v\right]=\left[L\right]^{T}\left[v\right]^{'}~;\left[u\right]=\left[L\right]^{T}\left[u\right]^{'}\end{aligned}}}
Plugging the first of equation (3) into equation (2) we get,
(4)
l
i
p
v
p
=
T
i
j
′
u
i
′
or,
[
L
]
[
v
]
=
[
T
]
′
[
u
]
′
{\displaystyle {\text{(4)}}\qquad l_{ip}v_{p}=T_{ij}^{'}u_{i}^{'}~{\text{or,}}~\left[L\right]\left[v\right]=\left[T\right]^{'}\left[u\right]^{'}}
Substituting for
v
p
{\displaystyle v_{p}}
in equation~(4) using equation~(1),
(5)
l
i
p
T
p
q
u
q
=
T
i
j
′
u
i
′
or,
[
L
]
[
T
]
[
u
]
=
[
T
]
′
[
u
]
′
{\displaystyle {\text{(5)}}\qquad l_{ip}T_{pq}u_{q}=T_{ij}^{'}u_{i}^{'}~{\text{or,}}~\left[L\right]\left[T\right]\left[u\right]=\left[T\right]^{'}\left[u\right]^{'}}
Substituting for
u
q
{\displaystyle u_{q}}
in equation (5) using equation (3),
(6)
l
i
p
T
p
q
l
i
q
u
i
′
=
T
i
j
′
u
i
′
or,
[
L
]
[
T
]
[
L
]
T
[
u
]
′
=
[
T
]
′
[
u
]
′
{\displaystyle {\text{(6)}}\qquad l_{ip}T_{pq}l_{iq}u_{i}^{'}=T_{ij}^{'}u_{i}^{'}~{\text{or,}}~\left[L\right]\left[T\right]\left[L\right]^{T}\left[u\right]^{'}=\left[T\right]^{'}\left[u\right]^{'}}
Therefore, if
u
≡
[
u
]
{\displaystyle \mathbf {u} \equiv \left[u\right]}
is an arbitrary vector,
l
i
p
T
p
q
l
i
q
=
T
i
j
′
⇒
T
i
j
′
=
l
i
p
l
j
q
T
p
q
or,
[
T
]
′
=
[
L
]
[
T
]
[
L
]
T
{\displaystyle l_{ip}T_{pq}l_{iq}=T_{ij}^{'}\Rightarrow T_{ij}^{'}=l_{ip}l_{jq}T_{pq}~{\text{or,}}~\left[T\right]^{'}=\left[L\right]\left[T\right]\left[L\right]^{T}}
which is the transformation rule for second order tensors.
Therefore, in matrix notation, the transformation rule can be written as
[
T
]
′
=
[
L
]
[
T
]
[
L
]
T
{\displaystyle \left[T\right]^{'}=\left[L\right]\left[T\right]\left[L\right]^{T}}