Given:
The displacement equation of equilibrium for an isotropic inhomogeneous linear elastic material can be written as
∇
∙
(
C
:
∇
u
)
+
b
=
0
{\displaystyle {\boldsymbol {\nabla }}\bullet (\mathbf {C} :{\boldsymbol {\nabla }}\mathbf {u} )+\mathbf {b} =0}
where
C
=
λ
1
(
2
)
⊗
1
(
2
)
+
2
μ
1
(
4
s
)
{\displaystyle \mathbf {C} =\lambda \mathbf {1} ^{(2)}\otimes \mathbf {1} ^{(2)}+2\mu \mathbf {1} ^{(4s)}}
and
λ
(
x
)
{\displaystyle \lambda (\mathbf {x} )}
and
μ
(
x
)
{\displaystyle \mu (\mathbf {x} )}
are the Lamé moduli.
Show:
Show that the displacement equation of equilibrium can be expressed as
μ
∇
∙
(
∇
u
)
+
(
λ
+
μ
)
∇
(
∇
∙
u
)
+
(
∇
u
+
∇
u
T
)
∇
μ
+
(
∇
∙
u
)
∇
λ
+
b
=
0
{\displaystyle \mu {\boldsymbol {\nabla }}\bullet ({\boldsymbol {\nabla }}\mathbf {u} )+(\lambda +\mu ){\boldsymbol {\nabla }}({\boldsymbol {\nabla }}\bullet \mathbf {u} )+({\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {\nabla }}\mathbf {u} ^{T}){\boldsymbol {\nabla }}{\mu }+({\boldsymbol {\nabla }}\bullet \mathbf {u} ){\boldsymbol {\nabla }}{\lambda }+\mathbf {b} =0}
The skew part of the tensor
∇
u
{\displaystyle {\boldsymbol {\nabla }}\mathbf {u} }
does not affect the stress because it leads to a rigid displacement field. Therefore, the displacement equation of equilibrium may be written as
∇
∙
[
C
:
symm
(
∇
u
)
]
+
b
=
0
{\displaystyle {\boldsymbol {\nabla }}\bullet \left[\mathbf {C} :{\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )\right]+\mathbf {b} =0}
where
symm
(
∇
u
)
=
1
2
(
∇
u
+
∇
u
T
)
{\displaystyle {\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )={\frac {1}{2}}({\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {\nabla }}\mathbf {u} ^{T})}
In index notataion,
symm
(
∇
u
)
=
ε
≡
ε
k
l
=
1
2
(
u
k
,
l
+
u
l
,
k
)
{\displaystyle {\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )={\boldsymbol {\varepsilon }}\equiv \varepsilon _{kl}={\frac {1}{2}}(u_{k,l}+u_{l,k})}
and
C
≡
C
i
j
k
l
=
λ
δ
i
j
δ
k
l
+
μ
(
δ
i
k
δ
j
l
+
δ
i
l
δ
j
k
)
{\displaystyle \mathbf {C} \equiv C_{ijkl}=\lambda \delta _{ij}\delta _{kl}+\mu (\delta _{ik}\delta _{jl}+\delta _{il}\delta _{jk})}
Therefore,
C
:
symm
(
∇
u
)
≡
C
i
j
k
l
ε
k
l
=
λ
δ
i
j
δ
k
l
ε
k
l
+
μ
δ
i
k
δ
j
l
ε
k
l
+
μ
δ
i
l
δ
j
k
ε
k
l
=
λ
ε
m
m
δ
i
j
+
μ
ε
i
j
+
μ
ε
i
j
=
λ
ε
m
m
δ
i
j
+
2
μ
ε
i
j
≡
λ
(
tr
ε
)
1
+
2
μ
ε
{\displaystyle {\begin{aligned}\mathbf {C} :{\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )\equiv C_{ijkl}~\varepsilon _{kl}&=\lambda \delta _{ij}\delta _{kl}~\varepsilon _{kl}+\mu \delta _{ik}\delta _{jl}~\varepsilon _{kl}+\mu \delta _{il}\delta _{jk}~\varepsilon _{kl}\\&=\lambda ~\varepsilon _{mm}\delta _{ij}+\mu ~\varepsilon _{ij}+\mu ~\varepsilon _{ij}\\&=\lambda ~\varepsilon _{mm}\delta _{ij}+2\mu ~\varepsilon _{ij}\\&\equiv \lambda ~({\text{tr}}~{\boldsymbol {\varepsilon }})\mathbf {1} +2\mu ~{\boldsymbol {\varepsilon }}\end{aligned}}}
Now,
tr
ε
≡
ε
m
m
=
1
2
(
u
m
,
m
+
u
m
,
m
)
=
u
m
,
m
≡
∇
∙
u
{\displaystyle {\text{tr}}~{\boldsymbol {\varepsilon }}\equiv \varepsilon _{mm}={\frac {1}{2}}(u_{m,m}+u_{m,m})=u_{m,m}\equiv {\boldsymbol {\nabla }}\bullet \mathbf {u} }
Hence,
C
:
symm
(
∇
u
)
=
λ
(
∇
∙
u
)
1
+
μ
(
∇
u
+
∇
u
T
)
{\displaystyle \mathbf {C} :{\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )=\lambda ~({\boldsymbol {\nabla }}\bullet \mathbf {u} )\mathbf {1} +\mu ~({\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {\nabla }}\mathbf {u} ^{T})}
Taking the divergence,
∇
∙
[
C
:
symm
(
∇
u
)
]
=
∇
∙
[
λ
(
∇
∙
u
)
1
+
μ
(
∇
u
+
∇
u
T
)
]
=
∇
∙
[
λ
(
∇
∙
u
)
1
]
+
∇
∙
(
μ
∇
u
)
+
∇
∙
(
μ
∇
u
T
)
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\bullet {\left[\mathbf {C} :{\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )\right]}&={\boldsymbol {\nabla }}\bullet {\left[\lambda ~({\boldsymbol {\nabla }}\bullet \mathbf {u} )\mathbf {1} +\mu ~({\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {\nabla }}\mathbf {u} ^{T})\right]}\\&={\boldsymbol {\nabla }}\bullet {\left[\lambda ~({\boldsymbol {\nabla }}\bullet \mathbf {u} )\mathbf {1} \right]}+{\boldsymbol {\nabla }}\bullet {\left(\mu ~{\boldsymbol {\nabla }}\mathbf {u} \right)}+{\boldsymbol {\nabla }}\bullet {\left(\mu ~{\boldsymbol {\nabla }}\mathbf {u} ^{T}\right)}\end{aligned}}}
Recall that
∇
ϕ
=
ϕ
,
j
∇
v
=
v
i
,
j
∇
∙
v
=
v
j
,
j
∇
∙
T
=
T
i
j
,
j
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}{\phi }&=\phi _{,j}\\{\boldsymbol {\nabla }}{\mathbf {v} }&=v_{i,j}\\{\boldsymbol {\nabla }}\bullet {\mathbf {v} }&=v_{j,j}\\{\boldsymbol {\nabla }}\bullet {\mathbf {T} }&=T_{ij,j}\end{aligned}}}
Therefore,
∇
∙
[
λ
(
∇
∙
u
)
1
]
≡
(
λ
u
k
,
k
δ
i
j
)
,
j
=
λ
,
i
u
k
,
k
+
λ
u
k
,
k
i
≡
∇
λ
(
∇
∙
u
)
+
λ
∇
(
∇
∙
u
)
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\bullet {\left[\lambda ~({\boldsymbol {\nabla }}\bullet \mathbf {u} )\mathbf {1} \right]}&\equiv \left(\lambda ~u_{k,k}\delta _{ij}\right)_{,j}\\&=\lambda _{,i}~u_{k,k}+\lambda ~u_{k,ki}\\&\equiv {\boldsymbol {\nabla }}{\lambda }({\boldsymbol {\nabla }}\bullet \mathbf {u} )+\lambda {\boldsymbol {\nabla }}{({\boldsymbol {\nabla }}\bullet \mathbf {u} )}\end{aligned}}}
∇
∙
(
μ
∇
u
)
≡
(
μ
u
i
,
j
)
,
j
=
μ
,
j
u
i
,
j
+
μ
u
i
,
j
j
≡
∇
μ
∇
u
+
μ
∇
∙
(
∇
u
)
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\bullet {\left(\mu ~{\boldsymbol {\nabla }}\mathbf {u} \right)}&\equiv \left(\mu ~u_{i,j}\right)_{,j}\\&=\mu _{,j}~u_{i,j}+\mu ~u_{i,jj}\\&\equiv {\boldsymbol {\nabla }}{\mu }{\boldsymbol {\nabla }}\mathbf {u} +\mu {\boldsymbol {\nabla }}\bullet {({\boldsymbol {\nabla }}\mathbf {u} )}\end{aligned}}}
∇
∙
(
μ
∇
u
T
)
≡
(
μ
u
j
,
i
)
,
j
=
μ
,
j
u
j
,
i
+
μ
u
j
,
i
j
≡
∇
μ
∇
u
T
+
μ
∇
(
∇
∙
u
)
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\bullet {\left(\mu ~{\boldsymbol {\nabla }}\mathbf {u} ^{T}\right)}&\equiv \left(\mu ~u_{j,i}\right)_{,j}\\&=\mu _{,j}~u_{j,i}+\mu ~u_{j,ij}\\&\equiv {\boldsymbol {\nabla }}{\mu }{\boldsymbol {\nabla }}\mathbf {u} ^{T}+\mu {\boldsymbol {\nabla }}{({\boldsymbol {\nabla }}\bullet \mathbf {u} )}\end{aligned}}}
Hence,
∇
∙
[
C
:
symm
(
∇
u
)
]
=
∇
λ
(
∇
∙
u
)
+
λ
∇
(
∇
∙
u
)
+
∇
μ
∇
u
+
μ
∇
∙
(
∇
u
)
+
∇
μ
∇
u
T
+
μ
∇
(
∇
∙
u
)
=
μ
∇
∙
(
∇
u
)
+
(
λ
+
μ
)
∇
(
∇
∙
u
)
+
∇
μ
(
∇
u
+
∇
u
T
)
+
∇
λ
(
∇
∙
u
)
{\displaystyle {\begin{aligned}{\boldsymbol {\nabla }}\bullet {\left[\mathbf {C} :{\text{symm}}({\boldsymbol {\nabla }}\mathbf {u} )\right]}&={\boldsymbol {\nabla }}{\lambda }({\boldsymbol {\nabla }}\bullet \mathbf {u} )+\lambda {\boldsymbol {\nabla }}{({\boldsymbol {\nabla }}\bullet \mathbf {u} )}+{\boldsymbol {\nabla }}{\mu }{\boldsymbol {\nabla }}\mathbf {u} +\mu {\boldsymbol {\nabla }}\bullet {({\boldsymbol {\nabla }}\mathbf {u} )}+{\boldsymbol {\nabla }}{\mu }{\boldsymbol {\nabla }}\mathbf {u} ^{T}+\mu {\boldsymbol {\nabla }}{({\boldsymbol {\nabla }}\bullet \mathbf {u} )}\\&=\mu {\boldsymbol {\nabla }}\bullet {({\boldsymbol {\nabla }}\mathbf {u} )}+(\lambda +\mu ){\boldsymbol {\nabla }}{({\boldsymbol {\nabla }}\bullet \mathbf {u} )}+{\boldsymbol {\nabla }}{\mu }\left({\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {\nabla }}\mathbf {u} ^{T}\right)+{\boldsymbol {\nabla }}{\lambda }({\boldsymbol {\nabla }}\bullet \mathbf {u} )\end{aligned}}}
Therefore, the displacement equation of equilibrium can be expressed as required, i.e,
μ
∇
∙
(
∇
u
)
+
(
λ
+
μ
)
∇
(
∇
∙
u
)
+
(
∇
u
+
∇
u
T
)
∇
μ
+
(
∇
∙
u
)
∇
λ
+
b
=
0
{\displaystyle \mu {\boldsymbol {\nabla }}\bullet ({\boldsymbol {\nabla }}\mathbf {u} )+(\lambda +\mu ){\boldsymbol {\nabla }}({\boldsymbol {\nabla }}\bullet \mathbf {u} )+({\boldsymbol {\nabla }}\mathbf {u} +{\boldsymbol {\nabla }}\mathbf {u} ^{T}){\boldsymbol {\nabla }}{\mu }+({\boldsymbol {\nabla }}\bullet \mathbf {u} ){\boldsymbol {\nabla }}{\lambda }+\mathbf {b} =0}